
Towards a Temporal Account of Contrary-to-Duty Constraints over Complex
Actions in the Situation Calculus

Jens Claßen , James P. Delgrande
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

jens classen@sfu.ca, jim@cs.sfu.ca

Abstract

With the advent of artificial agents in everyday life, it is
important that these agents are guided by social norms and
moral guidelines. Notions of obligation, permission, and the
like have traditionally been studied in the field of Deontic
Logic, where deontic assertions generally refer to what an
agent should or should not do; that is they refer to actions.
In Artificial Intelligence, the Situation Calculus is (arguably)
the best known and most studied formalism for reasoning
about action and change. In this paper, we further investigate
the integration of these two areas, particularly addressing so-
called contrary-to-duty (CTD) scenarios. For this purpose,
we present a new logic based on Lakemeyer and Levesque’s
modal Situation Calculus variant ES that we modify to ex-
press properties about programs from the action language
GOLOG, extended by new constructs for negated programs
and their joint execution. We use this formalism to discuss
three different approaches to CTD scenarios. First, we show
it to be expressive enough to fully capture Meyer’s dynamic
deontic logic PDeL, and hence corresponding solutions for
CTDs. Second, we demonstrate how our previous approach
to tackle CTDs in terms of defeasible conditionals over a re-
stricted set of GOLOG programs can be represented as well,
along with a method to compile them directly into the Situa-
tion Calculus action theory. Finally, we extend the language
of these conditionals to include a simple notion of intention,
which allows to describe CTDs not only in terms of actions
that will follow immediately, but that the agent has commit-
ted to execute at some time in the foreseeable future. All in
all, the contribution of the paper is thus an approach that is
substantially more general than previous approaches, and is
able to handle CTDs in a flexible manner.

1 Introduction
With artificial agents playing an ever-greater role in our daily
lives, there has been increasing interest in researching ways
to ensure that such agents act ethically and subject their ac-
tions to social norms, in particular where they interact with
humans or operate in shared environments. One possible
approach is to formalize relevant notions such as obligation,
permission and prohibition in a logical language, which tra-
ditionally has been the subject of study in the field of Deon-
tic Logic (von Wright 1951; Gabbay et al. 2013).

Probably the best researched system of deontic logic is
Standard Deontic Logic (SDL), a variant of the modal logic
KD (Chellas 1980), where a modal operator Oφ expresses

that “φ is obligatory” or “it ought to be that φ”, permission
is defined as its dual (Pφ = ¬O¬φ), and prohibition as the
negation of permission (Fφ = ¬Pφ). Semantically, acces-
sible worlds correspond to worlds that are in a certain sense
ideal, and obligatory/permitted/forbidden is whatever is true
in all/some/no accessible worlds.

While simple and elegant, SDL is also somewhat weak,
and yields some unintuitive consequences, which have been
traditionally referred to as “paradoxes” in the literature. One
particular class of such paradoxes is concerned with so-
called contrary-to-duty (CTD) obligations, usually given in
the form of conditional exhortations that state what ought to
be (done) if a certain other obligation is neglected. A well-
known example scenario is due to Chisholm (1963), and can
be phrased as follows:

1. You ought to help your neighbour.

2. If you help your neighbour you should tell them.

3. If you don’t help your neighbour, you shouldn’t tell them.

4. You don’t help your neighbour.

Intuitively, these statements are consistent, independent
from another, and lead to the conclusion that one shouldn’t
tell the neighbour one will come to help. However, differ-
ent possible encodings in SDL all either lead to an inconsis-
tency, or that one of the statements can be derived from the
others. It was later recognized (Hansson 1969) that the prob-
lem lies in representing these statements through monadic
deontic modalities and material implications, and that it
rather requires dyadic obligations such as O(tell/help) to
express systems of defeasible conditionals. Semantically,
the latter do not merely distinguish ideal from non-ideal
worlds, but rank possible worlds according to some pref-
erence relation, allowing for differing “degrees of ideality”.
For example, worlds in which we don’t go to help the neigh-
bour but tell them we are coming are ranked worse than
those where we don’t go, but at least don’t tell them we in-
tend to come, even though both cases are not ideal.

Another observation about the Chisholm scenario is that
there is a temporal aspect to it: If we are going to help, then
we ought to tell them beforehand. Furthermore, here deon-
tic modalities apply to actions (“ought-to-do”) rather than
propositions (“ought-to-be”). While some authors simply
used propositions to represent actions, in his seminal article,

von Wright (1951) originally introduced deontic modalities
as applying to action types. He argued that a suitable deon-
tic logic needs to be built upon the foundation of a more
general theory of action (von Wright 1963). Essentially,
when reasoning about obligations and permissions applying
to actions, we have to take into consideration that actions
have preconditions and effects that result in various forms
of interaction and interdependency between them, and so it
makes sense to formalize these notions. For example, help-
ing the neighbour may require having the necessary supplies
to do so, which may necessitate other actions, such as buy-
ing supplies at the hardware store.

Deontic action logic is an active area of research, and no-
table approaches to use such formalisms for tackling CTDs
include (Bartha 1999), which uses stit (“see to it that”) se-
mantics (Horty 2001), and (Meyer, Dignum, and Wieringa
1994), which is based on Meyer’s (1988) deontic dynamic
logic PDeL. While (Bartha 1999) extends the aforemen-
tioned idea to assign degrees of ideality to possible histories
(rather than worlds), a problem with stit is that actions do
not have proper names or types, but are described purely
through their effects, making it difficult to deal with deontic
constraints over complex actions. This is not an issue in dy-
namic logic, but the approach to CTDs suggested in (Meyer,
Dignum, and Wieringa 1994) is somewhat rudimentary in
that rankings among alternatives are not inferred “automat-
ically” by means of some non-monotonic mechanism, but
need to be encoded “manually” by the domain designer.

In a recent paper (Claßen and Delgrande 2020), we pro-
posed to tackle CTDs over actions by integrating deontic
notions into what is (arguably) the best known and most
studied formalism for reasoning about action and change,
namely the Situation Calculus (McCarthy and Hayes 1969;
Reiter 2001), together with the agent programming language
GOLOG (Levesque et al. 1997) that is defined on top of it.
Among other things, we proposed to express dyadic obliga-
tions as defeasible conditionals over complex actions (i.e.,
programs of GOLOG), and understand them as deontic con-
straints that the agent has to consider when planning its ac-
tions. These conditionals would then again induce a ranking
of differing “degrees of ideality”, but over situations (i.e.,
action sequences) instead of possible worlds. Moreover, we
showed that these constraints can then be “compiled away”
into the action theory, so that after a preprocessing step, no
additional reasoning machinery is required for planning un-
der such deontic constraints. A limitation was that for condi-
tionals we considered a very restricted fragment of GOLOG
programs that only admit single actions, one of the reasons
being that the approach requires a notion of negated actions
and programs, e.g. to express “not helping the neighbour”,
which is not trivial in the general case. Another limiting as-
sumption we made is that the action the agent is “going to
do” (e.g., helping) will follow immediately after the one it is
currently deliberating about (e.g., telling).

In this paper, we address some of these issues and explore
a more unified view on contrary-to-duty constraints over ac-
tions. For this purpose, in Section 2, we propose a new logic
called ESGL that is based on an extension (Claßen and Lake-
meyer 2008) of Lakemeyer and Levesque’s (2010) modal

Situation Calculus variant ES, which we modify to express
properties about a fragment of GOLOG programs, now in-
cluding a more sophisticated notion of action negation as
proposed by Meyer (1988). While the classical Situation
Calculus is defined axiomatically over Tarskian structures,
the modal variant we employ here uses a special semantics
that renders many formal definitions and proofs easier, while
retaining all benefits such as Reiter’s (1991) solution to the
frame problem. In particular, this is helpful for defining the
new negation operator, where we shift from a macro-based
definition of GOLOG (Levesque et al. 1997) to a transition-
based semantics (De Giacomo, Lespérance, and Levesque
2000). Moreover, different from previous definitions, our
semantics uses linear-time traces rather than branching-time
tree models, which further simplifies the treatment. We use
the new formalism to discuss three different approaches to
CTDs. First, in Section 3 we show it to be expressive enough
to fully capture Meyer’s dynamic deontic logic PDeL, and
hence corresponding solutions for CTDs. Second, in Sec-
tion 4 we demonstrate how our previous approach to tackle
CTDs in terms of defeasible conditionals over a restricted set
of GOLOG programs can equally be represented. Finally, in
Section 5 we extend the language of conditionals to include
a simple notion of intention, which allows to describe CTDs
not only in terms of actions that will follow immediately,
but that the agent has committed to execute at some time in
the foreseeable future. The overall contribution of this paper
is hence an approach that is substantially more general than
previous works, allowing for a flexible modelling of, among
other things, CTDs in the style of Chisholm’s paradox.

2 The Logic ESGL
In this section we present the formal definition of the logic
ESGL. It is based on Lakemeyer and Levesque’s (2010) logic
ES, a modal variant of the (epistemic) situation calculus,
where instead of situation terms, modal operators [t]φ (“φ is
true after action t”) and �φ (“φ holds after any sequence of
actions”) are used to talk about future states of affairs. Our
new logic is a variant of Claßen and Lakemeyer’s (2008;
2013) extension ESG, which, among other things, extends
the [·] operator to take a program (or complex action) δ as
argument, where δ is from a subset of the agent program-
ming language GOLOG (Levesque et al. 1997). The latter
includes both deterministic programming constructs such as
while loops and if conditionals, and non-deterministic ones
such as non-deterministic branching and iteration.

While the main purpose of ESG was the verification of
GOLOG programs, our focus of interest in this paper is rep-
resenting and reasoning about deontic properties. The new
logic ESGL we propose differs from ESG in two aspects: For
one, we extend the set of GOLOG programming constructs
by negation (δ) and joint execution (δ1 × δ2) of programs,
which will allow to express deontic constraints as condition-
als over GOLOG programs. For another, instead of interpret-
ing formulas over branching-time, tree-shaped models as is
done in the situation calculus and ES, we will use linear-
time models called traces. The latter not only is somewhat
simpler, but, as we will see, helps in interpreting the new

constructs in a similar fashion as in Meyer’s (1988) dynamic
deontic logic, thus inheriting many of its desirable features.
Note though that this section solely deals with interpretating
programs and their properties, and that deontic notions will
only be introduced and discussed in the subsequent sections.

2.1 Syntax
The language is a first-order modal dialect with equality and
sorts of type object, action and number. It includes count-
ably infinitely many standard names for each of the sorts, de-
noted byNO,NA, andNN respectively, allowing for a sub-
stitutional interpretation of quantification. Also included are
both fluent and rigid predicate and function symbols. Flu-
ents vary as the result of actions, but rigids do not. The logi-
cal connectives are ∧, ¬, ∀, together with the modal operator
〈δ〉, where δ may be any program expression, as defined be-
low. Other connectives like∨,⊃,⊂,≡, and ∃ are used as the
usual abbreviations, and terms and formulas are built from
these primitives in the usual way, including basic arithmetic
operations and relations for numbers.

We read 〈δ〉φ as “φ holds after some execution of program
δ” and define its dual [δ]φ as abbreviation for¬〈δ〉¬φ, where
�φ (read: “φ holds after any sequence of actions”) in turn
stands for [>]φ. The set of programs ∆ is given by:

δ ::= t | φ? | δ1; δ2 | δ | δ1 + δ2 | πx.δ | δ∗ (1)

in which t can be any action term (including a variable),
φ a formula, and x a variable. We thus consider a set of
programs given by primitive actions t, test conditions φ?,
sequence δ1; δ2, action negation δ, nondeterministic branch-
ing δ1 + δ2, nondeterministic choice of argument (“pick”)
πx.δ, and nondeterministic iteration δ∗. In addition, we
define joint execution δ1 × δ2 as abbreviation for δ1 + δ2,
the empty program nil as TRUE?, the universal action > as
πa. a∗, and failure ⊥ as FALSE?. For any expression (for-
mula, term, program,. . .) β, we use βxt to denote the result
of simultaneously replacing all free occurrences of variable
x by term t. We call a formula without � and [·] a fluent
formula, and one without free variables a sentence.

2.2 Semantics
Intuitively, a trace τ will be used to determine, at any point
in time k ∈ N, (a) what values the (fluent and rigid) predi-
cates and functions take and (b) what action will be executed
next. For the latter, we simply assume that there is a distin-
guished functional fluent ℵ of sort action with this special
meaning, but that we otherwise treat like any other function
symbol. More precisely, let
• N denote the set of all standard names,
• PF the set of all primitive sentences R(n1, . . . , nm),

where R is a (fluent or rigid) predicate symbol and all
the ni are standard names, and

• PT the set of all primitive terms g(n1, . . . , nm), where g
is a (fluent or rigid) function symbol and all the ni are
standard names.

Then a trace τ ∈ T is any mapping

τ : N× PF → {0, 1} τ : N× PT → N

that preserves sorts, interprets arithmetic operations and re-
lations in the usual way, and satisfies the rigidity constraint:
if g is a rigid function or predicate symbol, then for all k and
k′, τ [k, g(n1, . . . , nk)] = τ [k′, g(n1, . . . , nk)]. The pro-
gression of a trace τ by k time points is the trace τ (k) where
for all l ∈ N and all β ∈ PF ∪ PT ,

τ (k)[l, β] = τ [k + l, β].

We extend the idea of co-referring standard names to ar-
bitrary ground terms as follows. Given a variable-free term t
and a trace τ , we define |t|τ (read: the co-referring standard
name for t given τ) by:

1. If t ∈ N , then |t|τ = t;
2. |h(t1, . . . , tk)|τ = τ [0, h(n1, . . . , nk)], if ni = |ti|τ .
Truth of a sentence φ wrt. a trace τ is then given by:

1. τ |= F (t1, . . . , tk) iff τ [0, F (|t1|τ , . . . , |tk|τ)] = 1;
2. τ |= (t1 = t2) iff |t1|τ and |t2|τ are identical;
3. τ |= φ ∧ ψ iff τ |= φ and τ |= ψ;
4. τ |= ¬φ iff τ 6|= φ;
5. τ |= ∀x.φ iff τ |= φxn for all n ∈ Nx;
6. τ |= 〈δ〉φ iff τ ∈ ||δ;φ?||.
Above, Nx refers to the set of standard names of the same
sort as x. A sentence is satisfiable if some τ exists with
τ |= φ. When Σ is a set of sentences and φ a sentence, we
write Σ |= φ (read: “Σ logically entails φ”) to mean that for
every τ , if τ |= β for every β ∈ Σ, then also τ |= φ. Finally,
we write |= φ (read: “φ is valid”) to mean {} |= φ.

The interpretation of programs as required in rule 6 is de-
fined by mutual induction. Let a configuration c = 〈τ, δ〉
consist of a trace τ ∈ T (intuitively describing the current
and future states of the world) and a program δ ∈ ∆ (in-
tuitively what remains to be executed). Then the final con-
figurations F are the least set given by the rules shown in
Fig. 2, and for every action name n, the transition relation
n→ among configurations is the least set satisfying the rules

shown in Fig. 1. For arbitrary action sequences z, we define
the reflexive and transitive closure of n→ inductively as:

• c
〈〉→ c′ iff c = c′;

• c
nz→ c′ iff there is some c′′ such that c n→ c′′ and c′′

z→ c′.
The traces admitted by program δ are then given by

||δ|| .= {τ | 〈τ, δ〉 z→ 〈τ ′, δ′〉, 〈τ ′, δ′〉 ∈ F} (2)

The interpretation of formulas is standard in the sense that
atomic formulas that are not in the scope of some [·] or 〈·〉
operator are evaluated at the first time point of the trace (rule
1), and the Boolean connectives are defined as usual. For
quantification (rule 5), we follow the substitutional interpre-
tation of (Lakemeyer and Levesque 2010) in which a for-
mula ∀xP (x) holds just in case P (x) is true for every in-
stantiation of x by a standard name of the same sort.

Probably the most noteworthy difference to previous log-
ics is in rule 6: A trace satisfies 〈δ〉φ just in case it is one
of the traces admitted by the program that executes δ and

(T1) 〈τ, n〉 n→ 〈τ ′,nil〉, if τ ′ = τ (1) and τ [0,ℵ] = n;

(T2) 〈τ, δ1; δ2〉
n→ 〈τ ′, γ; δ2〉, if 〈τ, δ1〉

n→ 〈τ ′, γ〉;

(T3) 〈τ, δ1; δ2〉
n→ 〈τ ′, δ′〉,

if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉
n→ 〈τ ′, δ′〉;

(T4) 〈τ, δ1 + δ2〉
n→ 〈τ ′, δ′〉,

if 〈τ, δ1〉
n→ 〈τ ′, δ′〉 or 〈τ, δ2〉

n→ 〈τ ′, δ′〉;

(T5) 〈τ, πx.δ〉 n→ 〈τ ′, δ′〉,
if 〈τ, δxm〉

n→ 〈τ ′, δ′〉 for some m ∈ Nx;

(T6) 〈τ, δ∗〉 n→ 〈τ ′, γ; δ∗〉, if 〈τ, δ〉 n→ 〈τ ′, γ〉;

(T7) 〈τ,m〉 n→ 〈τ ′,nil〉,
if 〈τ, n〉 n→ 〈τ ′,nil〉 and n 6= m ∈ NA;

(T8) 〈τ, δ1; δ2〉
n→ 〈τ ′, δ′〉, if 〈τ, δ1〉

n→ 〈τ ′, δ′〉;

(T9) 〈τ, δ1; δ2〉
n→ 〈τ ′, γ; δ2〉, if 〈τ, δ1〉

n→ 〈τ ′, γ〉;

(T10) 〈τ, δ1; δ2〉
n→ 〈τ ′, δ′〉,

if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉
n→ 〈τ ′, δ′〉;

(T11) 〈τ, δ1 + δ2〉
n→ 〈τ ′, δ′1 × δ′2〉,

if 〈τ, δ1〉
n→ 〈τ ′, δ′1〉 and 〈τ, δ2〉

n→ 〈τ ′, δ′2〉;

(T12) 〈τ, δ1 + δ2〉
n→ 〈τ ′, δ′〉,

if 〈τ, δ1〉
n→ 〈τ ′, δ′〉 and 〈τ, δ2〉 ∈ F ;

(T13) 〈τ, δ1 + δ2〉
n→ 〈τ ′, δ′〉,

if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉
n→ 〈τ ′, δ′〉;

(T14) 〈τ, δ〉 n→ 〈τ ′, δ′〉, if 〈τ, δ〉 n→ 〈τ ′, δ′〉;

(T15) 〈τ, πx. δ〉 n→ 〈τ ′, δ′〉,
if for all n ∈ Nx, 〈τ, δxn〉 ∈ F or 〈τ, δxn〉

n→ 〈τ ′, δ′〉.

Figure 1: Transition rules for programs

(F1) 〈τ, φ?〉 ∈ F if τ |= φ;
(F2) 〈τ, δ1; δ2〉 ∈ F if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉 ∈ F ;
(F3) 〈τ, δ1 + δ2〉 ∈ F if 〈τ, δ1〉 ∈ F or 〈τ, δ2〉 ∈ F ;
(F4) 〈τ, πx.δ〉 ∈ F if 〈τ, δxn〉 ∈ F for some n ∈ Nx;
(F5) 〈τ, δ∗〉 ∈ F ;

(F6) 〈τ, φ?〉 ∈ F if τ 6|= φ;

(F7) 〈τ, δ1; δ2〉 ∈ F if 〈τ, δ1〉 ∈ F or 〈τ, δ1; δ2〉 ∈ F ;

(F8) 〈τ, δ1 + δ2〉 ∈ F if 〈τ, δ1〉 ∈ F and 〈τ, δ2〉 ∈ F ;

(F9) 〈τ, δ〉 ∈ F if 〈τ, δ〉 ∈ F ;

(F10) 〈τ, πx.δ〉 ∈ F if for all n ∈ Nx, 〈τ, δxn〉 ∈ F .

Figure 2: Finality rules for programs

afterwards tests for φ. Note that while a trace is infinite,
we require that a successful execution of a program con-
sists of finitely many transition steps leading to a final con-
figuration (2). Our semantics hence follows a similar intu-
ition as the one presented by Meyer (1988), where a termi-
nating program δ corresponds to all traces that start with a
sequence of actions compatible with δ, and that afterwards
continue indefinitely with the execution of arbitrary actions.
A program such as knock ; open(door) can be viewed as
a constraint on traces τ to satisfy τ [0,ℵ] = knock and
τ [1,ℵ] = open(door), without saying anything about how
to proceed afterwards (e.g., entering the door or not).

The transition semantics shown above is very similar to
the one presented in (Claßen and Lakemeyer 2008; Claßen
2013), which in turn is based on the one for CONGOLOG
(De Giacomo, Lespérance, and Levesque 2000), but with
the modification that tests are interpreted as conditions (rule
(F1)) rather than transitions. Due to the use of linear-time
traces instead of branching-time worlds, transition rule (T1)
for primitive actions differs in that it is required that the ex-
ecuted action n is actually the one scheduled to be executed
next according to trace τ ; in a tree-shaped world w this ad-
ditional requirement would not be necessary since there is a
successor situation for every possible action.

The most obvious change is that Figures 1 and 2 contain
additional rules for negated programs, and hence provide a
semantics for both negation and joint action. In the next
section, we explore some properties and show in what sense
defining the new constructs in this fashion is reasonable.

2.3 Basic Action Theories
We can formulate action theories in a similar fashion as in
the classical Situation Calculus for encoding dynamic do-
mains. Formally:
Definition 1 (Basic Action Theory). A basic action theory
(BAT) Σ = Σ0 ∪ Σpost is a set of formulas consisting of:

1. Σ0, the initial theory, a finite set of fluent sentences de-
scribing the initial state of the world;

2. Σpost , a finite set of successor state axioms (SSAs) incor-
porating Reiter’s (1991) solution to the frame problem for
encoding action effects:1

�[a]F (~x) ≡ γF (3)
�[a]f(~x) = y ≡ γf (4)

Here it is assumed that one axiom of the form (3) is in-
cluded for each relational fluent F relevant to the appli-
cation domain, and one of the form (4) for each functional
fluent f relevant to the application domain, and where γF
is a fluent formula with free variables a and ~x, and γf a
fluent formula with free variables among a, ~x, and y.

For simplicity, we don’t include a precondition axiom into
the BAT. Note that this is without loss of generality when
dealing with programs due to the fact that a formula φ being

1Free variables are understood as universally quantified from
the outside, [t] has higher precedence than the logical connectives,
and � has lower precedence. So �[a]F (~x) ≡ γF abbreviates
∀a, ~x.�(([a]F (~x)) ≡ γF).

a precondition of action t can be represented by using the
program expression φ?; t in its place.

2.4 Properties
We first note some properties related to joint action and se-
quence. In what follows, for any two programs δ1 and δ2, let
δ1 ≡ δ2 stand for ||δ1|| = ||δ2||.
Proposition 1.
(P1) δ1 × (δ1; δ2) ≡ δ1; δ2
(P2) ⊥; δ ≡ ⊥

Property (P1) exemplifies the aforementioned understand-
ing of programs as constraints on the possible future courses
of action, where after completing a program δ, infinitely
many arbitrary actions will follow. The program δ1; δ2 hence
constitutes an additional constraint on the set of traces ad-
mitted by δ1 only. (Meyer 1988) gives the example that
“opening the door” together with “opening the door and then
leaving” is the same as “opening the door and then leaving”.
Property (P2) is due to the fact that the set of traces admitted
by program ⊥ is already empty.

It should also be noted that the shift from tree-shaped
worlds to linear-time traces comes at a loss of expressive-
ness, and has the effect that ESGL is not (directly) compara-
ble to ES or ESG. A deeper analysis is beyond the scope of
this paper, but to illustrate the point, consider the question
whether a BAT Σ entails the formula ¬�φ. Here, it means
that along every trace consistent with Σ, there will sooner or
later come a point where φ does not hold. In ES and ESG,
it means that in every world consistent with Σ there is some
path where φ will be false at some point, which is a much
weaker condition. However, it can be argued that for the
purpose of planning, it is sufficient to look at the projection
problem, which is to decide whether Σ |= [δ]ψ for some flu-
ent formula ψ and some program δ that only mentions fluent
formulas as tests, and it can be shown that for this class of
reasoning tasks, the logics coincide.

Moreover, it is true that branching-time structures have
traditionally been favoured in the deontic logic literature, the
main reason being that there must be the possibility to vio-
late a norm, as otherwise, if the future were not open, there
would be nothing to reason about in terms of deontic prop-
erties. However, as we will see, our linear-time semantics
equally allows for this possibility due to the fact that when
reasoning about deontic constraints, we will consider sets of
linear traces, some of which may violate certain deontic con-
straints, and others don’t. Intuitively, this is therefore no real
restriction as any tree-shaped branching-time model can be
understood as a representation of a set of paths (i.e., traces).

3 Relation to PDeL
In this section we argue that the definitions and extensions
presented in the previous section are reasonable in the sense
that among other things, they capture Meyer’s (1988) dy-
namic deontic logic PDeL. It is based on Anderson’s (1958)
proposal of reducing deontic logic to alethic modal logic
by using a distinguished propositional variable V that in-
tuitively represents a “bad state” or the violation of a norm.

For dynamic logic, one defines
Fδ

.
= [δ]V (5)

saying that an action δ is forbidden if its execution leads to a
violation. Permission and obligation can then be defined in
terms of prohibition as usual:

Pδ
.
= ¬Fδ and Oδ

.
= Fδ (6)

Obviously, this requires the action algebra to include an op-
erator for negating actions in order to represent “ought-to-
do” obligations Oδ. As it turns out, the question of how
to define the negation of a complex action is far from triv-
ial2. For PDeL, Meyer presents the following five axioms as
desiderata that he argues must “reasonably hold” for δ:

(N1) δ1 ≡ δ1

(N2) δ1; δ2 ≡ δ1 + δ1; δ2

(N3) δ1 + δ2 ≡ δ1 × δ2
(N4) δ1 × δ2 ≡ δ1 + δ2

(N5) φ→ δ1/δ2 ≡ φ→ δ1/δ2
The most interesting of these properties is probably (N2). It
says that there are exactly two possible ways of executing
the negation of a sequential program δ1; δ2: Either do some-
thing next that is “not δ1”, or if doing δ1, then do some-
thing afterwards that is “not δ2”. The last property defines
the negation of a conditional action (“if φ then δ1 else δ2”),
which we can define in GOLOG by means of
φ→ δ1/δ2

.
= [φ?; δ1] + [¬φ?; δ2] (7)

With the definition presented in the previous section, we get:
Proposition 2. (N1)–(N5) are valid in ESGL.

Meyer’s action algebra does not include tests, the Kleene
star, or pick operators (PDeL is propositional). While for the
pick operator, which essentially behaves like an existential
quantifier, there is no obvious dual, we note that our tran-
sition semantics is compatible for tests and iteration in the
following sense:
(N6) φ? ≡ ¬φ?

(N7) δ∗ ≡ ⊥
(N6) follows from (N5) and the fact that φ? ≡ φ → nil/⊥,
using ⊥ ≡ nil and nil ≡ ⊥. (N7) makes sense when con-
sidering the expansion law for the Kleene star
δ∗ ≡ nil + δ; δ∗

as then
δ∗ ≡ nil + δ; δ∗ ≡ nil × δ; δ∗ ≡ ⊥× δ; δ∗ ≡ ⊥.

Based on (N1)–(N5), Meyer proposes the system PDeL as
given by the axioms and inference rules shown in Figure
3. He argues that this is sufficient to entail many important
theorems of deontic logic (the paper lists 36 of them) when
the deontic modalities are understood according to (5) and
(6). We note that ESGL subsumes PDeL as follows, assum-
ing that duration(δ) denotes the maximal length of action
sequences admitted by δ:

2See (Claßen and Delgrande 2020, Section 3.2) for a brief dis-
cussion. Alternatives to Meyer’s definition were proposed e.g. by
van der Meyden (1996) and Broersen (2004a).

Axioms
(PC) all tautologies of propositional logic

(�⊃) [δ](φ1 ⊃ φ2) ⊃ [δ]φ1 ⊃ [δ]φ2

(;) [δ1 ; δ2]φ ≡ [δ1][δ2]φ

(+) [δ1 + δ2]φ ≡ [δ1]φ ∧ [δ2]φ

(×) [δ1 × δ2]φ ⊂ [δ1]φ ∨ [δ2]φ

(provided duration(δ1) = duration(δ2))
(→) [φ→ δ1/δ2]ψ ≡ (φ ⊃ [δ1]ψ) ∧ (¬φ ⊃ [δ2]ψ)

(♦) 〈δ〉φ ≡ ¬[δ]¬φ
(;) [δ1 ; δ2]φ ≡ [δ1]φ ∧ [δ1][δ2]φ

(+) [δ1 + δ2]φ ⊂ [δ1]φ ∨ [δ2]φ

(provided duration(δ1) = duration(δ2))

(×) [δ1 × δ2]φ ≡ [δ1]φ ∧ [δ2]φ

(→) [φ→ δ1/δ2]ψ ≡ (φ ⊃ [δ1]ψ) ∧ (¬φ ⊃ [δ2]ψ)

() [δ]φ ≡ [δ]φ

(⊥) [⊥]φ

Rules
(MP) From φ and φ ⊃ ψ infer ψ.

(N) From φ infer [δ]φ.

Figure 3: The system PDeL

Proposition 3. In ESGL, axioms (PC)–(⊥) are valid, and
inference rules (MP) and (N) are sound.

We remark that under our transition semantics, programs
in general do not constitute a Boolean algebra (Figure 4):
Proposition 4. Axioms (B1) – (B10) of Boolean algebras
are valid in ESGL, but axioms (B11) and (B12) are not.

This means that while the usual laws of associativity,
commutativity, neutral elements, distributivity, and idem-
potency apply, the complement does not always behave as
expected. A simple counterexample for (B12) is the pro-
gram δ = (a + a; b); c, where a, b and c are primitive ac-
tions. A trace τ that executes 〈a, b, c〉 as its first three actions
(i.e. τ [0,ℵ] = a, τ [1,ℵ] = b, τ [2,ℵ] = c) is an execution of
both δ and its negation:

〈τ, (a+ a; b); c〉 a→ 〈τ (1), b; c〉 b→ 〈τ (2), c〉 c→ 〈τ (3),nil〉

〈τ, (a+ a; b); c〉 a→ 〈τ (1), c〉 b→ 〈τ (2),nil〉
Intuitively, this is due to property (N2): One way of exe-
cuting the negation of a sequence δ1; δ2 is to execute δ1, fol-
lowed by the negation of δ2. Here, doing action a is one way
of executing (a+ a; b), and doing action b is one way of ex-
ecuting the negation of action c. While this behaviour may
(or may not) be undesirable, note that this is already possible
in Meyer’s original system PDeL (and does not conflict with
any results concerning deontic properties). To avoid it, one
would have to include counterparts of (B11) and (B12) as
additional axioms for PDeL. The appendix in (Meyer 1988)

(B1) (δ1 + δ2) + δ3 ≡ δ1 + (δ2 + δ3) (+ is associative)
(B2) δ1 + δ2 ≡ δ2 + δ1 (+ is commutative)
(B3) δ1 +⊥ ≡ δ1 (⊥ is the neutral element wrt +)
(B4) δ1 + (δ2 × δ3) ≡ (δ1 + δ2)× (δ1 + δ3) (+ distrib.)
(B5) δ1 + δ1 ≡ δ1 (+ is idempotent)
(B6) (δ1 × δ2)× δ3 ≡ δ1 × (δ2 × δ3) (× is associative)
(B7) δ1 × δ2 ≡ δ2 × δ1 (× is commutative)
(B8) δ1 ×> ≡ δ1 (> is the neutral element wrt ×)
(B9) δ1 × (δ2 + δ3) ≡ (δ1 × δ2) + (δ1 × δ3) (× distrib.)

(B10) δ1 × δ1 ≡ δ1 (× is idempotent)

(B11) δ1 + δ1 ≡ > (complement wrt +)

(B12) δ1 × δ1 ≡ ⊥ (complement wrt ×)

Figure 4: Axioms of a Boolean algebra

provides the definition for a semantics satisfying these addi-
tional properties, but is (arguably) more involved than what
we present here. In particular, it requires to consider sets of
traces, rather than traces, as the semantical domain.

3.1 Representing the Chisholm Scenario
In (Meyer, Dignum, and Wieringa 1994) and (Meyer,
Wieringa, and Dignum 1998), the authors suggest to address
contrary-to-duty obligations by extending the formalism to
include multiple violation atoms V1, V2, V3, . . . and use ac-
cordingly indexed deontic modalities. The Chisholm sce-
nario, for example, could then be expressed as follows:

O1h (8)

F2(t;h) (9)

F3(t;h) (10)

saying that one ought help the neighbour, that it is forbidden
to not tell and then help, and that is also prohibited to tell fol-
lowed by not helping. The fact that one actually does not go
to help cannot be represented explicitly because of dynamic
logic being about hypothetical reasoning in the form of “if a
certain action is taken, then a certain result is obtained.”

With the additional assumption that violations persist (by
including Vi ⊃ [δ]Vi as an additional axiom schema), it is
now possible to reason about sub-ideal states in terms of
which norms have been violated. For example, telling fol-
lowed by helping will result in V1 (the first norm is still vi-
olated because we didn’t help immediately as next action),
but telling and not helping in V1 ∧ V2 ∧ V3, so the former
should be preferred over the latter.

There are multiple drawbacks to this approach. First, a
preference relation among states with different violations
has to be defined explicitly. While this arguably allows for a
certain flexibility, e.g. to say that some violations are more
severe than others, the number of combinations to be con-
sidered grows exponentially with the number of violation
atoms, i.e., constraints. Second, the authors “admit that it
would be far nicer to have a representation closer to the

natural language representation, but this would call for a
non-trivial extension of PDeL, in which one can also rea-
son ’backward’ directly.” Third, notice that even in the in-
tuitively ideal case where the agent tells and actually helps,
constraint 8 will cause a violation due to the fact that helping
was not the immediate next action. What is missing is a no-
tion of an agent intending to help in the foreseeable future.
We will address these issues in the following sections.

4 Simple Temporal Conditionals
In this section we show that ESGL is also capable of captur-
ing the approach presented in (Claßen and Delgrande 2020),
where deontic constraints are expressed as conditionals over
(a restricted set of) GOLOG programs. Specifically, here we
are interested in conditionals of the temporal kind that allow
to represent scenarios such as the Chisholm set. The set of
GOLOG programs in question is as follows:
Definition 2 (Guarded-Action Fragment). The set of
guarded actions is given by the following grammar:

γ ::= t | πx.γ | φ?; γ

The guarded-action fragment is then given by

δ ::= γ | δ | δ + δ | δ × δ
where γ is a guarded action.
Guarded actions hence are primitive actions, possibly pre-
ceded by a sequence of picks and test conditions, and the
guarded-action fragment is all their Boolean combinations.
An important special case is the “wildcard” action ? .

= πa.a.
We note that
Proposition 5. The guarded-action fragment is a Boolean
algebra with ? as neutral element wrt ×.
This means the laws shown in Figure 4 are valid for this
restricted set if we substitute ? for >. Moreover, note that
for such programs, joint execution distributes over sequence:
Proposition 6. Let δ1, . . . , δ4 be of the guarded-action frag-
ment. Then (δ1; δ2)× (δ3; δ4) ≡ (δ1 × δ3); (δ2 × δ4).

We then use programs from the guarded-action fragment to
express deontic constraints as described below.
Definition 3 (Temporal Conditionals). A temporal deontic
conditional is an expression that is of the form

δ ⇒a γ or δ ⇒b γ

where δ and γ are from the guarded-action fragment. We
read δ ⇒a γ as “if committed to doing δ, the agent ought
to do γ afterwards”, and δ ⇒b γ as “. . . before.” This defi-
nition includes the special case of unconditional constraints
where δ = ?. The materialization of a rule is given by

M(δ ⇒a γ)
.
= δ; ?+ ?; γ

M(δ ⇒b γ)
.
= ? ; δ + γ; ?

For a finite set of rules ρ = {r1, . . . , rk} we understand
M(ρ) as M(r1)× · · · ×M(rk), where M(∅) = ?; ?.
A set of such defeasible conditionals now induces a rank-
ing over traces using a construction similar to the one for
rational closure (Kraus, Lehmann, and Magidor 1990):

Definition 4 (Ranking). Given a finite set ρ of temporal con-
ditionals over programs and a set of traces e, a ranking of
the rules in ρ wrt e is given by

ρe0 = ρ

ρei+1 = {(δ ⇒a γ) ∈ ρei | e ∩ ||M(ρei)× (δ; ?)|| = ∅} ∪
{(δ ⇒b γ) ∈ ρei | e ∩ ||M(ρei)× (?; δ)|| = ∅}

Rules r ∈ ρei+1 are called exceptional wrt ρei . For every
τ ∈ e, the rank assigned by ρ wrt e then is

Rank(τ, e, ρ) = min{i | τ ∈ ||M(ρei)||}.
The cumulative rank assigned by e to any time point k ∈ N
is given by the sum of all ranks from times 0 up to k:

CRank(τ, e, ρ, k) =

k∑
i=0

Rank(τ (i), e(i), ρ)

where e(i) = {τ (i) | τ ∈ e}.
Here we follow (Claßen and Delgrande 2020) for aggregat-
ing ranks over time points by simply summing them up. In-
tuitively, this means that a trace will be ranked as less ideal
the more “bad” actions are performed in it. In particular,
there is no way of undoing a bad act, and any further bad
deed makes the course of action less and less ideal.

4.1 Representing the Chisholm Scenario
Using simple temporal constraints, the first three statements
of the Chisholm scenario can be expressed as:

? ⇒a help (11)
help ⇒b tell (12)

help ⇒b tell (13)
The first rule states that generally, the agent ought to go help
the neighbours. The second one means that when the agent
intends to go and help, it should tell the neighbours imme-
diately before. If on the other hand, says the third rule, the
agent does not intend to go and help, it ought not tell them.
Again, the fourth statement of the Chisholm set cannot be
represented explicitly due to reasoning in this formalism be-
ing purely hypothetical.

Assume that e = T is the set of all traces. In the fol-
lowing, let h stand for the action term help, and t for tell .
Materializing ρ0 = {(11), (12), (13)} then yields:
M((11)) = (?; ?) + (?;h) ≡ (?;h)

M((12)) = (?;h) + (t; ?)

M((13)) = (?;h) + (t; ?) ≡ (?;h) + (t; ?)

Recall that M(ρ0) is given by the conjunction of these three
expressions. Since according to Proposition 5, the usual
distributive laws apply, we can “multiply” them out. Ob-
serve that (?;h) is incompatible with (?;h), and that (t; ?)
contradicts with (t; ?). The result is hence equivalent to
(?;h)× (t; ?), which in turn can be simplified to (t;h) using
Propositions 5 and 6. We thus get
||(t;h)× (?; ?)|| = ||t;h|| 6= ∅
||(t;h)× (?;h)|| = ||t;h|| 6= ∅
||(t;h)× (?;h)|| = ||⊥|| = ∅

Because rule (13) is the only exceptional one, we obtain
ρ1 = {(13)} and M(ρ1) ≡ ?;h+ t; ?. The rule is obviously
not exceptional with itself, so ρ2 = ∅, hence M(ρ2) = ?; ?.
We thus end up with

M(ρ0) ≡ t;h, M(ρ1) ≡ ?;h+ t; ?, M(ρ2) ≡ ?; ?
which induces the following ranking:

Rank(τ, e, ρ) =


0, τ [0,ℵ] = tell and τ [1,ℵ] = help

1, τ [0,ℵ] 6= tell

2, τ [0,ℵ] = tell and τ [1,ℵ] 6= help

4.2 Compiling Conditionals into BATs
In (Claßen and Delgrande 2020), we also showed how de-
ontic constraints can be compiled into the action theory, so
that after a preprocessing step, no special (non-monotonic)
reasoning machinery is needed for planning under deontic
constraints. The basic idea is to use a new function fluent
ideal that represents the degree of ideality of the current sit-
uation. For this purpose, we include

ideal = 0, (14)
into the initial theory Σ0 of our BAT. The value of this fluent
may increase due to actions, as per the SSA

�[a]ideal = ideal + bad(a) (15)
that we include into Σpost . The potential increase is deter-
mined by another fluent bad(a) that expresses how “bad” an
action a is, and that we define further below. First, to keep
track of which programs mentioned in deontic constraints
have been executed previously, we introduce finitely many
additional fluent predicates Did(γ), where for each one Σ0

contains the axiom
¬Did(γ) (16)

and Σpost contains the SSA
�[a]Did(γ) ≡ C[γ, a]. (17)

The right-hand side of the SSA uses the compilation opera-
tor C whose definition is given below:
Definition 5.

1. C[α, a] = (a = α)

2. C[φ?; δ, a] = φ ∧ C[δ, a]

3. C[πv.δ, a] = ∃v. C[δ, a]

4. C[δ, a] = ¬C[δ, a], if δ is a guarded action
5. C[δ1 + δ2, a] = C[δ1, a] ∨ C[δ2, a]

6. C[δ1 × δ2, a] = C[δ1, a] ∧ C[δ2, a]

7. C[γ; δ, a] = Did(γ) ∧ C[δ, a]

With this operator, we can now define an axiom for bad .
Suppose that we determined a ranking as shown previously,
then for a finite number of rule sets ρ0, . . . , ρk, we obtained
their materialized counterparts
M(ρ0) ≡ δ0, M(ρ1) ≡ δ1, . . . M(ρk) ≡ δk

where each δi is a program from the guarded-action frag-
ment. We then define the badness of action a as the minimal
index i whose δi admits a:

bad(a) = b ≡
k∨
i=0

(b = i) ∧ C[δi, a] ∧
i−1∧
j=0

¬C[δj , a] (18)

Proposition 7. Let Σ be a BAT, ρ a set of simple temporal
constraints, Σρ be the result of extending Σ with axioms (14)
– (18), and e = {τ | τ |= Σρ}. For any τ ∈ e and k ∈ N,

CRank(τ, e, ρ, k) = d iff τ (k) |= (ideal = d).

In the Chisholm example we obtain, after simplifications,
bad(a) = b ≡ b = 0 ∧Did(tell) ∧ a = help ∨ (19)

b = 1 ∧Did(tell) ∨
b = 2 ∧Did(tell) ∧ a 6= help

where the SSAs for Did(tell) and Did(tell) are given by
�[a]Did(tell) ≡ a = tell (20)

�[a]Did(tell) ≡ a 6= tell (21)

5 Intentional Conditionals
One shortcoming of the approaches discussed in the previ-
ous sections is that it is assumed that one action under con-
sideration will follow immediately after the other. This is
obviously not a realistic assumption for many practical sce-
narios. For example, helping the neighbour might necessi-
tate other actions, such as buying supplies at the hardware
store. In this section, we hence explore the idea of includ-
ing a notion of intention, represented by temporal modalities
over programs with a finite horizon. Specifically, for any δ
from the guarded-action fragment and k ≥ 1, we will use
�kδ to say “during k steps, always δ”, defined through

�kδ
.
= δk

.
= δ; · · · ; δ︸ ︷︷ ︸

k times

, (22)

and ♦kδ to express “within k steps, eventually δ”, given by
♦kδ

.
= δ + ?; δ + ?; ?; δ + · · · + ?; · · · ; ?︸ ︷︷ ︸

k−1 times

; δ. (23)

We note that the two operators are indeed duals:
Proposition 8.
(N8) �kδ ≡ ♦kδ
(N9) ♦kδ ≡ �kδ
Definition 6 (Intentional Guarded-Action Fragment). The
intentional guarded-action fragment is given by
δ ::= γ | �kγ | ♦kγ | δ

where γ is from the guarded-action fragment.

Definition 7 (Intentional Conditionals). An intentional de-
ontic conditional is an expression of the form
δ ⇒ γ

where δ and γ are programs of the intentional guarded-
action fragment. The materialization of a rule is given by

M(δ ⇒ γ)
.
= δ + γ

For a finite set ρ = {r1, . . . , rk} we understand M(ρ) as
M(r1)× · · · ×M(rk) as before, but using M(∅) = >.
Definition 8 (Intentional Situation Ranking). Given a finite
set ρ of intentional conditionals and a set of traces e, an
intentional ranking of the rules in ρ wrt e is given by

ρe0 = ρ

ρei+1 = {(δ ⇒ γ) ∈ ρei | e ∩ ||M(ρei)× δ|| = ∅}
Rank(τ, e, ρ) and CRank(τ, e, ρ, k) are exactly as in Def. 4.

5.1 Representing the Chisholm Scenario
Suppose we want to apply a finite horizon of k ≥ 2. The
first three statements of the Chisholm scenario could be ex-
pressed as:

? ⇒ ♦khelp (24)
♦khelp ⇒ tell (25)

♦khelp ⇒ tell (26)
Assume again that e = T is the set of all traces, and let h
and t abbreviate help and tell , respectively. Materializing
ρ0 = {(24), (25), (26)} then yields:

M((24)) = ?+ ♦kh ≡ ♦kh

M((25)) = ♦kh+ t ≡ �kh+ t

M((26)) = ♦kh+ t ≡ ♦kh+ t

Again, we determine the product of these expressions and
apply the distributive law. Observe that ♦kh is incompatible
with �kh, and that t contradicts with t. The result is hence
equivalent to ♦kh× t. We thus get
||(♦kh× t)× ?|| = ||♦kh× t|| 6= ∅
||(♦kh× t)× ♦kh|| = ||♦kh× t|| 6= ∅
||(♦kh× t)×�kh|| = ||⊥|| = ∅

Similar to before, we obtain ρ1 = {(26)} and ρ2 = ∅, hence
M(ρ0) ≡ ♦kh× t, M(ρ1) ≡ ♦kh+ t, M(ρ2) ≡ >

which induces the following ranking:

Rank(τ, e, ρ) =



0, τ [0,ℵ] = tell and
τ [i,ℵ] = help for some 1 ≤ i ≤ k

1, τ [0,ℵ] 6= tell

2, τ [0,ℵ] = tell and
τ [i,ℵ] 6= help for all 1 ≤ i ≤ k

Note that for k = 2, we get exactly the same behaviour as
with simple temporal conditionals in the previous section.

5.2 Compiling Conditionals into BATs
The compilation method works on intentional conditionals
as well. The only thing we have to ensure is that negation
is only applied to program expressions from the guarded-
action fragment. For this purpose, we introduce the two fol-
lowing rules in addition to ones stated in Definition 5:

8. C[�kδ, a] = C[♦kδ, a]

9. C[♦kδ, a] = C[�kδ, a]

In the non-negated case, the existing rules can be applied
using (22) and (23). For the Chisholm example, we get for
horizon k = 3, again after simplifications:

bad(a) = b ≡ (27)
b = 0 ∧ (Did(tell + tell ; ?)) ∧ a = help ∨
b = 1 ∧ (Did(tell + tell ; ?) ∨
b = 2 ∧ (Did(tell + tell ; ?)) ∧ a 6= help

with the additional SSAs
�[a]Did(tell + tell ; ?) ≡ a = tell ∨Did(tell) (28)

�[a]Did(tell + tell ; ?) ≡ a 6= tell ∨Did(tell) (29)

6 Discussion
The Chisholm paradox has received a great deal of atten-
tion in the literature. To name but a few, works in the early
1980s (van Eck 1982; Loewer and Belzer 1983) presented
solution proposals based on temporal extensions of deontic
logic, identifying the scenario’s temporal nature as a vital as-
pect that SDL is unable to appropriately represent. Van der
Torre and Tan (1998) argued that these were still insufficient
for Chisholm’s original set, as this requires conditionaliza-
tion where the antecedent (going to help) refers to a later
point in time than the consequent (telling). They go on to
present a formalization based on stit (“see to it that”) seman-
tics (Horty 2001), modified to include a preference relation
over histories. While these kinds of analyses yielded valu-
able theoretical insights into the nature of the problem, the
proposed formalisms do not lend themselves well to practi-
cal implementations, e.g. due to the fact that actions in stit –
other than planning languages or action formalisms such as
the Situation Calculus – do not have proper names or types,
but are described purely through their effects.

In this paper, we proposed a new formalism for reasoning
about contrary-to-duty scenarios based on a modal variant
of the Situation Calculus that allows to express postcondi-
tions for complex actions in the form of programs from the
GOLOG agent language. By employing a special seman-
tics based on linear-time traces rather than branching-time
tree models, we could integrate non-trivial notions of action
negation and joint execution of programs. We showed that
the approach is more general than two existing ones due to
Meyer (1988) and Claßen and Delgrande (2020), and pre-
sented a third, more expressive alternative involving a sim-
ple notion of intention.

This line of research is work in progress, and there are
many avenues for future work. On the technical side, it
could be argued that having a program semantics where the
entire set of programs constitutes a Boolean algebra is de-
sirable, so as to be able to apply all the “usual” laws to such
expressions. It is conceivable to do this by adopting a def-
inition more similar to the one of (Meyer 1988), albeit at
the cost of being less simple, and less close to the original
transition semantics of GOLOG.

Regarding expressivity, besides supporting a larger frag-
ment of GOLOG programs in deontic conditionals, it would
be interesting to explore more sophisticated notions of inten-
tions to formulate constraints. While it is certainly possible
to come up with infinitary versions of the temporal opera-
tors �k and ♦k, in most cases it seems reasonable to apply
a certain form of deadline. The latter may be of a temporal
nature (e.g., the neighbour needs our help on the same day),
and so for a more realistic representation we could incorpo-
rate an explicit, quantitative notion of time, instead of just
crudely counting the number of actions. However, a more
general approach could be to allow for arbitrary conditions
as deadlines, for instance by adopting an approach due to
Broersen (2004b) that uses operators M(ρ ≤ δ) to express
the motivation to achieve ρ before δ becomes true (e.g., have
the neighbour’s roof fixed before it starts raining).

Finally, it will be interesting to combine the notions of
actions and obligations we considered here not only with

intentions, but also beliefs, and study their interplay. This
is similar to how BOID architectures (Broersen et al. 2001)
have been proposed to generalize beliefs, desires, intention
(Bratman 1987) by including obligations and norms.

Acknowledgements
We gratefully acknowledge financial support from the Nat-
ural Sciences and Engineering Research Council of Canada
and thank the referees for their valuable comments.

References
Anderson, A. R. 1958. A reduction of deontic logic to
alethic modal logic. Mind 67(265):100–103.
Bartha, P. 1999. Moral preference, contrary-to-duty obliga-
tion and defeasible oughts. Norms, logics and information
systems: new studies in deontic logic and computer science
93–108.
Bratman, M. 1987. Intentions, Plans, and Practical Reason.
Cambridge University Press.
Broersen, J. M.; Dastani, M.; Hulstijn, J.; Huang, Z.; and
van der Torre, L. W. N. 2001. The BOID architecture: con-
flicts between beliefs, obligations, intentions and desires. In
Proc. AGENTS 2001, 9–16. ACM Press.
Broersen, J. M. 2004a. Action negation and alternative
reductions for dynamic deontic logics. Journal of Applied
Logic 2(1):153–168.
Broersen, J. M. 2004b. On the logic of ’being motivated to
achieve rho, before delta’. In Proc. JELIA 2004, 334–346.
Springer.
Chellas, B. F. 1980. Modal Logic: An Introduction. Cam-
bridge University Press.
Chisholm, R. M. 1963. Contrary-to-duty imperatives and
deontic logic. Analysis 24(2):33–36.
Claßen, J., and Delgrande, J. 2020. Dyadic obligations over
complex actions as deontic constraints in the situation cal-
culus. In Proc. KR 2020, 253–263. ijcai.org.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Proc. KR 2008, 589–599.
AAAI Press.
Claßen, J. 2013. Planning and Verification in the Agent Lan-
guage Golog. Ph.D. Dissertation, Department of Computer
Science, RWTH Aachen University.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
Gabbay, D.; Horty, J.; Parent, X.; van der Meyden, R.; and
van der Torre, L. 2013. Handbook of Deontic Logic and
Normative Systems. College Publications.
Hansson, B. 1969. An analysis of some deontic logics. Noûs
3(4):373–398.
Horty, J. F. 2001. Agency and Deontic Logic. Oxford Uni-
versity Press.

Kraus, S.; Lehmann, D. J.; and Magidor, M. 1990. Non-
monotonic reasoning, preferential models and cumulative
logics. Artificial Intelligence 44(1-2):167–207.
Lakemeyer, G., and Levesque, H. J. 2010. A semantic char-
acterization of a useful fragment of the situation calculus
with knowledge. Artificial Intelligence 175(1):142–164.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Programming
31(1–3):59–83.
Loewer, B., and Belzer, M. 1983. Dyadic deontic detach-
ment. Synthese 54(2):295–318.
McCarthy, J., and Hayes, P. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. In Ma-
chine Intelligence 4. New York: American Elsevier. 463–
502.
Meyer, J.-J. C.; Dignum, F.; and Wieringa, R. J. 1994. The
paradoxes of deontic logic revisited: A computer science
perspective. Technical Report UU-CS-1994-38, Utrecht
University.
Meyer, J. C.; Wieringa, R. J.; and Dignum, F. 1998. The role
of deontic logic in the specification of information systems.
In Logics for Databases and Information Systems (Proceed-
ings of the the Dagstuhl Seminar 9529: Role of Logics in In-
formation Systems, 1995), 71–115. Kluwer Academic Pub-
lishers.
Meyer, J. C. 1988. A different approach to deontic logic:
deontic logic viewed as a variant of dynamic logic. Notre
Dame Journal of Formal Logic 29(1):109–136.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. Artificial Intelligence and Math-
ematical Theory of Computation: Papers in Honor of John
McCarthy 359–380.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
van der Meyden, R. 1996. The dynamic logic of permission.
Journal of Logic and Computation 6(3):465–479.
van der Torre, L. W. N., and Tan, Y. 1998. The temporal
analysis of Chisholm’s paradox. In Proc. AAAI 1998, 650–
655. AAAI Press.
van Eck, J. A. 1982. A system of temporally relative modal
and deontic predicate logic and its philosophical applica-
tions. Logique et Analyse 25(99):249–290.
von Wright, G. H. 1951. Deontic logic. Mind 60(237):1–15.
von Wright, G. H. 1963. Norm and action: a logical en-
quiry. Routledge and Kegan Paul.

	Introduction
	The Logic ESGL
	Syntax
	Semantics
	Basic Action Theories
	Properties

	Relation to PDeL
	Representing the Chisholm Scenario

	Simple Temporal Conditionals
	Representing the Chisholm Scenario
	Compiling Conditionals into BATs

	Intentional Conditionals
	Representing the Chisholm Scenario
	Compiling Conditionals into BATs

	Discussion

