
A Semantics for ADL as Progression in the Situation Calculus
Jens Claßen and Gerhard Lakemeyer

Department of Computer Science
RWTH Aachen
52056 Aachen

Germany
〈classen|gerhard〉@cs.rwth-aachen.de

Abstract
Lin and Reiter were the first to propose a purely declarative
semantics of STRIPS by relating the update of a STRIPS
database to a form of progression in the situation calculus.
In this paper we show that a corresponding result can be ob-
tained also for ADL. We do so using a variant of the situa-
tion calculus recently proposed by Lakemeyer and Levesque.
Compared to Lin and Reiter this leads to a simpler technical
treatment, including a new notion of progression.

Introduction
Lin and Reiter (Lin & Reiter 1997) were the first to propose
a purely declarative semantics of STRIPS (Fikes & Nilsson
1971) by relating the update of a STRIPS database to a form
of progression of a corresponding situation-calculus theory.
More precisely, they show that when translating STRIPS
planning problems into basic action theories of Reiter’s sit-
uation calculus (Reiter 2001), then the STRIPS mechanism
of adding and deleting literals after an actionA is performed
is correct in the sense that the conclusions about the future
that can be drawn using the updated theory are the same as
those drawn from the theory before the update.

Given that today’s planning languages like PDDL (Fox &
Long 2003) go well beyond STRIPS, it seems natural to ask
whether Lin and Reiter’s results can be extended along these
lines. One advantage would be to have a uniform framework
for specifying the semantics of planning languages. Perhaps
more importantly, as we will argue in more detail at the end
of the paper, this would also provide a foundation to bring
together the planning and action language paradigms, which
have largely developed independently after the invention of
STRIPS.

In this paper we propose a first step in this direction by
considering the ADL fragment of PDDL (Pednault 1989;
1994). In contrast to Lin and Reiter, we use a new vari-
ant of the situation calculus called ES recently proposed by
Lakemeyer and Levesque (Lakemeyer & Levesque 2004).
This has at least two advantages: for one, there is no need to
switch the language when translating formulas of the plan-
ning language into the new situation calculus because there
are no situation terms to worry about (in ES, situations oc-
cur only in the semantics); for another, semantic definitions
like progression become simpler as it is no longer necessary

to consider arbitrary first-order structures but only certain
ones over a fixed universe of discourse. As Lakemeyer and
Levesque recently showed (Lakemeyer & Levesque 2005),
these simplifications do not lead to a loss of expressiveness.
In fact, they show that second-order ES captures precisely
the non-epistemic fragment of the situation calculus and the
action language Golog (Levesque et al. 1997).1

The main technical contributions of this paper are the fol-
lowing: we show how to translate an ADL problem descrip-
tion into a basic action theory of ES; we develop a notion
of progression, which is similar to that of Lin and Reiter but
also simpler given the semantics underlying ES; finally, we
establish that updating an ADL database (called a state) after
performing an action is correct in the sense that the resulting
state corresponds precisely to progressing the corresponding
basic action theory. The result is obtained for both closed
and open-world states.

With the exception of Lin and Reiter (Lin & Reiter 1997),
the approaches to giving semantics to planning languages
have all been meta-theoretic. When Pednault introduced
ADL (1989; 1994), he provided a semantics that defined op-
erators as mappings between first-order structures that are
defined by additions and deletions of tuples to the relations
and functions of that structures. He presented a method of
deriving a situation calculus axiomatization from ADL oper-
ator schema, but did not show the semantic correspondence
between the two. Despite the fact that PDDL was built upon
ADL, it was not until PDDL2.1 that a formal semantics was
provided. The focus in (Fox & Long 2003) was more on for-
malizing the meaning of the newly introduced temporal ex-
tensions and concurrent actions; nonetheless, the predicate-
logic subset of Fox and Long’s semantics represents a gener-
alization of Lifschitz’ state transition semantics for STRIPS
(1986). However, they compile conditional effects into the
preconditions of the operators, propositionalize quantifiers
and only consider the case of complete state descriptions.
An exhaustive study of the expressiveness and compilability
of different subsets of the propositional version of ADL is
given in (Nebel 2000).

The paper proceeds as follows. We first introduce ES and
show how basic action theories are formulated in this logic.

1The correspondence with the full situation calculus is close but
not exact.



Next, we define ADL problem descriptions and provide a
formal semantics by mapping them into basic action theo-
ries. We then define progression and establish the correct-
ness of updating an ADL state with respect to progression.
Before concluding, we give an outlook on applying the re-
sults to combine planning and the action language Golog.

The Logic ES
For the purpose of this paper, we only need the objective (i.e.
non-epistemic), first-order subset of ES.

The Language
The language consists of formulas over symbols from the
following vocabulary:
• variables V = {x1, x2, . . . , y1, y2, . . . , a1, a2, . . .};
• fluent predicates of arity k: F k = {F k

1 , F
k
2 , . . .}; for

example, At;
we assume this list includes the distinguished predicate
Poss;

• rigid functions of arity k: Gk = {gk
1 , g

k
2 , . . .}; for ex-

ample, paycheck, moveB;
• connectives and other symbols: =, ∧, ¬, ∀, ¤, round

and square parentheses, period, comma.
For simplicity, we do not include rigid (non-fluent) predi-
cates or fluent (non-rigid) functions. The terms of the lan-
guage are the least set of expressions such that

1. Every first-order variable is a term;
2. If t1, . . . , tk are terms and g ∈ Gk, then g(t1, . . . , tk) is a

term.
We let R denote the set of all ground terms. For simplicity,
instead of having variables of the action sort distinct from
those of the object sort as in the situation calculus, we lump
both of these together and allow ourselves to use any term as
an action or as an object. Finally, the well-formed formulas
of the language form the least set such that

1. If t1, . . . , tk are terms and F ∈ F k, then F (t1, . . . , tk) is
an (atomic) formula;

2. If t1 and t2 are terms, then (t1 = t2) is a formula;
3. If t is a term and α is a formula, then [t]α is a formula;
4. If α and β are formulas, then so are (α ∧ β), ¬α, ∀x.α,
¤α.

We read [t]α as “α holds after action t” and ¤α as “α holds
after any sequence of actions”. As usual, we treat ∃x.α,
(α ∨ β), (α ⊃ β), and (α ≡ β) as abbreviations. We call a
formula without free variables a sentence.

In the following, we will call a sentence fluent, when it
does not contain ¤ and [t] operators and does not mention
Poss. In addition, we introduce the following special nota-
tion: A type τ is a symbol from F 1, i.e. a unary predicate.
Then we define:

∀x:τ. φ def
= ∀x. τ(x) ⊃ φ

We will often use the vector notation to refer to a tuple of
terms (~t) or types (~τ ). If ~r denotes r1, . . . , rk and~t stands for

t1, . . . , tk, then (~r = ~t) means (r1 = t1) ∧ · · · ∧ (rk = tk).
Further, ~τ(~t) serves as an abbreviation for τ1(t1) ∧ · · · ∧
τk(tk).

The semantics
Intuitively, a world w will determine which fluents are true,
but not just initially, also after any sequence of actions. For-
mally, let P denote the set of all pairs σ:ρ where σ ∈ R∗ is
considered a sequence of actions, and ρ = F (r1, . . . , rk) is
a ground fluent atom from F k. A world then is a mapping
from P to truth values {0, 1}.

First-order variables are interpreted substitutionally over
the rigid termsR, that is, R is treated as being isomorphic to
a fixed universe of discourse. This is similar to L (Levesque
& Lakemeyer 2001), where standard names are used as the
domain.

Here is the complete semantic definition: Given a world
w, for any formula α with no free variables, we define
w |= α as w, 〈 〉 |= α where 〈〉 denotes the empty action
sequence and
w, σ |= F (r1, . . . , rk) iff w[σ:F (r1, . . . , rk)] = 1;
w, σ |= (r1 = r2) iff r1 and r2 are identical;
w, σ |= (α ∧ β) iff w, σ |= α and w, σ |= β;
w, σ |= ¬α iff w, σ 6|= α;
w, σ |= ∀x. α iff w, σ |= αx

r , for every r ∈ R;
w, σ |= [r]α iff w, σ · r |= α;
w, σ |= ¤α iff w, σ · σ′ |= α, for every σ′ ∈ R∗;

The notation αx
t means the result of simultaneously replac-

ing all free occurrences of the variable x by the term t; σ1 ·σ2

denotes the concatenation of the two action sequences.
When Σ is a set of sentences and α is a sentence, we write

Σ |= α (read: Σ logically entails α) to mean that for every
w, if w |= α′ for every α′ ∈ Σ, then w |= α. Finally, we
write |= α (read: α is valid) to mean {} |= α.

Basic Action Theories
As shown in (Lakemeyer & Levesque 2004), we are able to
define basic action theories in a way very similar to those
originally introduced by Reiter:

Given a set F of fluent predicates, a set of sentences Σ is
called a basic action theory over F iff it only mentions the
fluents in F and is of the form Σ = Σ0 ∪Σpre ∪Σpost, where
• Σ0 is a finite set of fluent sentences,
• Σpre is a singleton of the form2

¤Poss(a) ≡ π, where π is
fluent with a being the only free variable;

• Σpost is a finite set of successor state axioms of the form3

¤[a]F (~x) ≡ γF , one for each fluent F ∈ F \ {Poss},
where γF is a fluent sentence whose free variables are
among ~x and a.
2We follow the convention that free variables are universally

quantified from the outside. We also assume that ¤ has lower syn-
tactic precedence than the logical connectives, so that ¤Poss(a) ≡
π stands for ∀a.¤(Poss(a) ≡ π).

3The [t] construct has higher precedence than the logical con-
nectives. So ¤[a]F (~x) ≡ γF abbreviates ∀a.¤([a]F (~x) ≡ γF ).



The idea is that Σ0 represents the initial database, Σpre is
one large precondition axiom and Σpost the set of successor
state axioms for all fluents in F (incorporating Reiter’s so-
lution (1991) to the frame problem).

The ADL subset of PDDL
ADL was proposed by Pednault (1989) as a planning for-
malism that constitutes a compromise between the highly
expressive situation calculus on the one hand and the com-
putationally more beneficial STRIPS language on the other.
Recently, it has been used as the basis for the definition of
a general planning domain definition language called PDDL
(Ghallab et al. 1998; Gerevini & Long 2005a).

Here, we are interested in the ADL subset of PDDL, i.e.
the language we obtain by only allowing the :adl require-
ment to be set. This implies that, beyond the definition of
standard STRIPS operators, equality is supported as built-in
predicate and preconditions may contain negation, disjunc-
tion and quantification (therefore they are normal first-order
formulas using the domain’s predicates together with the ac-
tion’s object parameters and the domain objects as the only
function symbols). Further, conditional effects are allowed
and objects may be typed.

ADL Operators: The General Form
Formally, an ADL operator A is given by a triple
(~y:~τ , πA, εA), where ~y:~τ is a list of variable symbols with
associated types4, πA is a precondition formula with free
variables among ~y and εA is an effect formula with free
variables among ~y. The ~y are the action’s parameters, πA

is called the precondition and εA the effect of A, for short.
The name of the operator A has to be a symbol from Gp

(the function symbols of arity p), where p is the number of
parameters ~y of A (possibly zero).

A precondition formula is of the following form: An
atomic formula F (~t) is a precondition formula, if each of the
ti is either a variable or constant (i.e. terms are not nested).
Similarly, an equality atom (t1 = t2) is a precondition for-
mula, if each ti is a variable or a constant. If φ1 and φ2

are precondition formulas, then so are φ1 ∧ φ2, ¬φ1 and
∀x:τ.φ1

5.
The effect formulas are defined as follows: An atomic for-

mula F (~t) is an effect formula, if each of the ti is either a
variable or a constant. Similarly, a negated atomic formula
¬F (~t) is an effect formula, if each ti is a variable or a con-
stant. If ψ1 and ψ2 are effect formulas, then ψ1 ∧ ψ2 and
∀x:τ.ψ1 are as well. If γ is a precondition formula and ψ is
an effect formula not containing “⇒” and “∀”, then γ ⇒ ψ
is an effect formula.

Therefore, effect formulas are always conjunctions of sin-
gle effects. An effect of the form γ ⇒ ψ is called a condi-
tional effect. Nesting of conditional effects is disallowed.

4~y:~τ is to be understood as a list of pairs yi:τi.
5Recall that ∨, ∃ etc. are treated as abbreviations, therefore dis-

junction and existential quantification is allowed as well.

ADL Operators: The Normal Form
We say that an ADL operator A is in normal form, if its
effect εA looks as follows:

∧
Fj
∀ ~xj: ~τFj

. (γ+
Fj ,A( ~xj) ⇒ Fj( ~xj)) ∧∧

Fj
∀ ~xj: ~τFj

. (γ−Fj ,A( ~xj) ⇒ ¬Fj( ~xj))
(1)

We mean here that for each Fj , there is at most one conjunct
· · · ⇒ Fj(~x) and also at most one conjunct · · · ⇒ ¬Fj(~x);
neither is it required that there are conjuncts for all predi-
cates of a theory nor is the ordering important.

ADL Problem Descriptions
A problem description for ADL now is given by:

1. a finite list of types τ1, . . . , τl,Object (Object is a special
type that has to be always included);
• along with this a finite list of statements of the form

τi:(either τi1 · · · τiki
) (2)

defining some of the types as compound6types; a prim-
itive type is one that does not appear on the left-hand
side of such a definition and is distinct from Object;

2. a finite list of fluent predicates F1, . . . , Fn;
• associated with each Fj a list of types τj1 , . . . , τjkj

(one for each argument of Fj)
3. a finite list of objects with associated primitive types
o1:τo1

, . . . , ok:τok
(object symbols are taken from G0);

4. a finite list of ADL operators A1, . . . , Am (with associ-
ated descriptions in the above general form);

5. an initial state I (see below) and
6. a goal description G in form of a precondition formula.
I and G may only contain the symbols from items 1 to 3;
the formulas in the descriptions of the Ai have to be con-
structed using only these symbols and the respective opera-
tor’s parameters. We further require that all the symbols are
distinct. In particular, this forbids using a type also as an Fj

and using an object also as an Ai.
The purpose of the Object type is to serve as a dummy

whenever an action argument, predicate argument or object
is not required to be of any specific type. All objects oi are
implicitly of this type; Object is a super-type of all other
types. Therefore, it is not allowed to appear anywhere in an
“either” statement.

In the case of closed-world planning, the initial state de-
scription I is simply given by a finite set of ground fluent
atoms F (~r); the truth value of non-appearing atoms is as-
sumed to be FALSE. When we are doing open-world plan-
ning, I is defined by a finite set of ground atoms F (~r)
and negated ground atoms ¬F (~r) (literals); non-appearing
atoms are assumed to have an initially unknown truth value
(I is a belief state, i.e. a representation of a set of possible
world states).

6τi is to be understood as the union of the τij . For simplicity,
we assume that these definitions do not contain cycles, although
one can think of examples where this would make sense (e.g. defin-
ing two types as equal).



Example
For illustration, let’s consider a variant of Pednault’s well-
known briefcase example (Pednault 1988; Ghallab et al.
1998) dealing with transporting objects between home and
work using a briefcase. We have the following problem de-
scription:

1. Types:
Object, Item,Location
The Object type is the general superclass introduced
above. Items are objects that may be transported. A
Location is a place where we may move objects to.

2. Predicates with associated types of arguments:
At(Item,Location), In(Item)

At(x1, x2) denotes that item x1 currently is at location x2,
In(x1) means that x1 is in the briefcase.

3. Objects with associated types:
briefcase:Item, paycheck:Item, dictionary:Item
office:Location, home:Location

4. Operators:
moveB =

(〈y1:Location, y2:Location〉,
At(briefcase, y1) ∧ ¬(y1 = y2),

At(briefcase, y2) ∧ ¬At(briefcase, y1)∧
∀z:Item. In(z) ⇒ At(z, y2) ∧ ¬At(z, y1))

The briefcase can be moved from y1 to y2 if it is at the
starting location y1 and y1 is not identical to the destina-
tion y2. After moving, the briefcase is at the destination
and no longer at the starting location, which equally holds
for everything that is in the briefcase.
putInB =

(〈y1:Item, y2:Location〉,
¬(y1 = briefcase),
At(y1, y2) ∧ At(briefcase, y2) ⇒ In(y1))

This operator allows to put something into the briefcase,
if it is not the briefcase itself. When applied to an object
that is not at the same location as the briefcase, the action
has no effect.
takeOutOfB =

(〈y1:Item〉, In(y1),¬In(y1))

Something is removed from the briefcase.
emptyB =

(〈〉, TRUE,∀z:Item. In(z) ⇒ ¬In(z))

Everything is removed from the briefcase.
5. Initial State (in a closed world):

I = {At(briefcase, home), At(paycheck, home),
At(dictionary, home), In(paycheck)}

6. Goal description:
G = At(briefcase, office) ∧ At(dictionary, office)∧

At(paycheck, home)

Mapping ADL to ES
In this section, we generalize the approach of (Lin & Reiter
1997) for STRIPS to show that applying ADL operators can
as well be expressed as a certain form of first-order progres-
sion in the situation calculus ES. Below, we will construct,
given an ADL problem description in normal form, a corre-
sponding basic action theory Σ. The restriction to normal-
form ADL is no loss of generality, as the following theorem
shows.
Theorem 1 The operators of an ADL problem description
can always be transformed into an equivalent normal form.

Here are the operators from the example, put into normal
form:
moveB =

(〈y1:Location, y2:Location〉,
At(briefcase, y1) ∧ ¬(y1 = y2),

∀x1:Item. ∀x2:Location.
((x1 = briefcase ∨ In(x1)) ∧ x2 = y2)

⇒ At(x1, x2) ∧
∀x1:Item. ∀x2:Location.

((x1 = briefcase ∨ In(x1)) ∧ x2 = y1)
⇒ ¬At(x1, x2))

putInB =

(〈y1:Item, y2:Location〉,
¬(y1 = briefcase),
∀x1:Item. At(x1, y2) ∧ At(briefcase, y2) ⇒ In(x1))

takeOutOfB =

(〈y1:Item〉,

In(y1),

∀x1:Item. (x1 = y1) ⇒ ¬In(x1))

emptyB =

(〈〉,

TRUE,
∀x1:Item. In(x1) ⇒ ¬In(x1))

The Successor State Axioms Σpost

It is not a coincidence that the normal form (1) resembles
Reiter’s (1991) normal form effect axioms which are com-
bined out of individual positive and negative effects and
which he then uses to construct his successor state axioms
as a solution to the frame problem. Generalizing his ap-
proach (also applied in (Pednault 1994)), we transform a set
of operator descriptions to a set of successor state axioms as
follows, assuming (without loss of generality by Theorem 1)
that all operators are given in normal form. Let

γ+
Fj

def
=

∨

γFj,Ai
∈NF (Ai)

∃~yi.a = Ai(~yi) ∧ γ
+
Fj ,Ai

(3)

By “γFj ,Ai
∈ NF (Ai)” we mean that there only is a dis-

junct for Ai, 1 ≤ i ≤ m if there really exists a γFj ,Ai
in

the normal form of the effect of Ai. Recall that the normal
form did not require that there is a ∀ ~xj: ~τFj

. (γ+
Fj ,A( ~xj) ⇒



Fj( ~xj)) for every Fj of the domain. We only obtain ones for
Fj that did already appear7positively in the original effect of
A.

Using a similar definition for γ−Fj
, we get the successor

state axiom for Fj :

¤[a]Fj( ~xj) ≡ γ+
Fj

∧ ~τFj
( ~xj) ∨ Fj( ~xj) ∧ ¬γ−Fj

(4)

Differing from the usual construction, we introduced the
conjunct ~τFj

( ~xj) to ensure that Fj can only become true
for instantiations of the ~xj that are consistent with the type
definitions for Fj’s arguments.

For each type τi, we additionally include a successor state
axiom

¤[a]τi(x) ≡ τi(x) (5)

to define it as a situation-independent predicate (recall that
by the definition of the semantics, all predicates are initially
assumed to be fluent).

In the example, we get

γ+
At = ∃y1.∃y2.a = moveB(y1, y2) ∧

((x1 = briefcase ∨ In(x1)) ∧ x2 = y2)
(6)

γ−At = ∃y1.∃y2.a = moveB(y1, y2) ∧
((x1 = briefcase ∨ In(x1)) ∧ x2 = y1)

(7)

γ+
In = ∃y1.∃y2.a = putInB(y1, y2) ∧

(At(x1, y2) ∧ At(briefcase, y2))
(8)

γ−In = ∃y1.a = takeOutOfB(y1)∧ (x1 = y2) ∨
a = emptyB ∧ In(x1)

(9)

Notice that, as stated above, not all operators are men-
tioned in γ+

At , but only those that possibly cause a posi-
tive truth value for At. Therefore, the construction pre-
sented here still incorporates a solution to the frame prob-
lem. Our Σpost now consists of the following sentences:
¤[a]At(x1, x2) ≡ γ+

At ∧ Item(x1) ∧ Location(x2)
∨ At(x1, x2) ∧ ¬γ−At

¤[a]In(x1) ≡ γ+
In ∧ Item(x1)
∨ In(x1) ∧ ¬γ−In

¤[a]Object(x) ≡ Object(x)
¤[a]Item(x) ≡ Item(x)
¤[a]Location(x) ≡ Location(x)

The Precondition Axiom Σpre

Further, a precondition axiom can be obtained in a similar
fashion, that is a case distinction for all operators of the
problem domain:

π
def
=

∨

1≤i≤m

∃~yi:~τi.a = Ai(~yi) ∧ πAi
(10)

The types ~τi are those stated in the parameter list of Ai, and
πAi

simply is the unmodified precondition for the operator

7more precisely for those Fj appearing positively in εA outside
of the antecedent γ of a conditional effect γ ⇒ ψ

Ai. In our example, we obtain:

π = ∃y1:Location.∃y2:Location.a = moveB(y1, y2) ∧
At(briefcase, y1) ∧ ¬(y1 = y2) ∨

∃y1:Item.∃y2:Location. a = putInB(y1, y2) ∧
¬(y1 = briefcase) ∨

∃y1:Item. a = takeOutOfB(y1) ∧
In(y1) ∨

a = emptyB ∧
TRUE

(11)

The Initial Description Σ0

Finally, we are left with defining the initial description Σ0.
Here, we not only have to encode the information about the
initial state of the world, but also everything that is con-
cerned with the typing of objects. For all “either” statements
of the form (2), we need a sentence

τi(x) ≡ τi1(x) ∨ · · · ∨ τiki
(x) (12)

in Σ0. Further, we include

Fj(xj1 , . . . , xjkj
) ⊃ τj1(xj1) ∧ · · · ∧ τjkj

(xjkj
) (13)

for each type declaration of predicate arguments. Next, for
each primitive type τi such that oj1 , . . . , ojki

are all objects
declared to be of type τi, we include the sentence

τi(x) ≡ x = oj1 ∨ · · · ∨ x = ojki
(14)

The final sentence needed for translating the type definitions
is

Object(x) ≡ τ1(x) ∨ · · · ∨ τl(x) (15)

Although the above sentences in themselves only establish
type consistency in the initial situation (there are no ¤ op-
erators here), the special form of Σpost defined earlier en-
sures that these facts will remain true in successor situations.
More precisely, we have here an example where state con-
straints are resolved by compiling them into successor state
axioms (Lin & Reiter 1994).

We now come to the encoding of the actual initial world
state. In the case of a closed world, we include for each Fj

the sentence

Fj( ~xj) ≡ ~xj = ~o1 ∨ · · · ∨ ~xj = ~oko
(16)

assuming that Fj(~o1), . . . , Fj( ~oko
) are all the atoms in I

mentioning Fj . If we are however dealing with an open-
world problem, we instead include the sentence

~xj = ~o1 ∨ · · · ∨ ~xj = ~oko
⊃ Fj( ~xj), (17)

where Fj(~o1), . . . , Fj( ~okj
) are all the positive literals in I

using Fj ; and the sentence

~xj = ~o1 ∨ · · · ∨ ~xj = ~oko
⊃ ¬Fj( ~xj) (18)

when ¬Fj(~o1), . . . ,¬Fj( ~oko
) are all the negative literals in

I using Fj .



In our closed-world example, we end up with a Σ0 con-
sisting of:

At(x1, x2) ⊃ (Item(x1) ∧ Location(x2))

In(x1) ⊃ Item(x1)

Item(x) ≡ ((x = briefcase) ∨ (x = paycheck) ∨
(x = dictionary))

Location(x) ≡ ((x = office) ∨ (x = home))
Object(x) ≡ (Item(x) ∨ Location(x))

At(x1, x2) ≡ ((x1 = briefcase ∧ x2 = home) ∨
(x1 = paycheck ∧ x2 = home) ∨
(x1 = dictionary ∧ x2 = home))

In(x1) ≡ (x1 = paycheck)

Correctness
Finally, we will show the correspondence between the state-
transitional semantics for ADL of adding and deleting lit-
erals and first-order progression in ES. The following defi-
nition is derived from Lin and Reiter’s original proposal of
progression, but is simpler due to the fact that we do not
need to consider arbitrary first-order structures.

A set of sentences Σr is a progression of Σ0 through a
ground term r (wrt Σpre and Σpost) iff:

1. all sentences in Σr are fluent in 〈r〉;
2. Σ0 ∪ Σpre ∪ Σpost |= Σr;
3. for every world wr with wr |= Σr ∪Σpre ∪Σpost, there is a

world w with w |= Σ0 ∪ Σpre ∪ Σpost such that:
wr, r · σ |= F (~t) iff w, r · σ |= F (~t)

for all σ ∈ R∗ and all primitive formulas F (~t) such that
F ∈ F (including Poss).

A formula that is fluent in 〈r〉 is one which is equivalent to
[r]φ for some fluent8 formula φ, i.e. it only talks about the
fluents’ values in the situation 〈r〉. Intuitively, for an ob-
server standing in the situation after r was performed (and
only looking “forward” in time), it is impossible to distin-
guish between a world w satisfying the original theory Σ
and a world wr that satisfies Σr ∪ Σpre ∪ Σpost.

We now want to address the issue of how to obtain such a
progression. The result will be that for a basic action theory
that is a translation from an ADL problem (and therefore the
member of a restricted subclass of the general form of action
theories), it is quite easy to construct such a set. Given an
ADL problem description and an action A(~p) (i.e. an opera-
tor and object symbols as instantiations for A’s parameters),
we make, under the condition that Σ0 ∪ Σpre |= Poss(A(~p)),
the following modifications to the state description I:
• in the case of closed-world planning:

– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
if Σ0 |= γ+

Fj

~xj a

~o A(~p)
: add Fj(~o)

8Recall that our terminology contains both the notions of flu-
ent predicates (like At) as well as that of fluent formulas (e.g.
∃x.At(x, home) ∧ In(x)); they should not be confused.

– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
Σ0 |= γ−Fj

~xj a

~o A(~p)
: delete Fj(~o)

• in the case of open-world planning:
– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
Σ0 |= γ+

Fj

~xj a

~o A(~p)
: add Fj(~o), delete ¬Fj(~o)

– for all objects ~o and all fluent predicates Fj such that
Fj(~o) is type-consistent
Σ0 |= γ−Fj

~xj a

~o A(~p)
: add ¬Fj(~o), delete Fj(~o)

If we denote the set of literals to be added by Adds and the
ones to be deleted by Dels, then the new state description is

I ′ = (I \Dels) ∪Adds.

Here it is assumed that we only consider symbols (objects,
fluents, operators) that appear in the given problem descrip-
tion, which yields only finitely many combinations. The fact
that we only have to check type-consistent atoms further re-
stricts the number of atoms to be treated. Formally, Fj(~o)
being type-consistent means that Σ0 ∪ { ~τFj

(~o)} is satisfi-
able.
Theorem 2 Let I ′ be the set obtained in the above construc-
tion applied to a given (closed- or open-world) ADL prob-
lem description and a ground action r = A(~p). Further let

Σr = {[r]ψ | ψ ∈ Σ0(I
′)},

where Σ0(I
′) means the result of applying the constructions

in (12)-(18) to I ′ instead of I . For all fluent predicates Fj in
the problem description, let the consistency condition

|= (γ+
Fj

∧ γ−Fj
)a
r

hold. Then Σr is a progression of Σ0 through r
• in the closed-world case;
• in the open-world case only under the additional condi-

tion that whenever for some γ∗Fj
(where ∗ ∈ {+,−}) it

holds that Σ0 ∪ {γ∗Fj

~xj a

~o r
} is satisfiable, then

Σ0 |= γ∗Fj

~xj a

~o r
.

For space reasons, we will not present a proof here. The
main reason for being able to establish the result lies in the
finiteness of the domain to be considered. Whereas ES’s se-
mantics assumes a domain with countably infinite many ob-
jects and actions, PDDL, as a language that is used in prac-
tical implementations, only allows problem domains with a
finite number of operators and items. We utilize the typing
constructs to reconcile these two views.

The additional condition for open-world problems can
be illustrated with a small example: consider an operator
A = (∅, TRUE, P ⇒ Q1 ∧ ¬P ⇒ Q2) and an open world
initial state description of I = ∅. Applying A to I leads to a
situation whose state is described byQ1∨Q2, since it is both
possible that P holds and that it does not hold. Obviously,
the resulting state is not representable by a set of literals,



therefore we cannot apply the above progression scheme.
In fact, mainly because of such undefined states, the open-
world requirement is not included in the PDDL language
definition anymore since version 2.1 (Fox & Long 2003),
restricting its application to purely closed-world planning.

Notice that in the closed-word case, our special form of
basic action theories constitutes a proper subclass of what
is called “relatively complete databases” in (Lin & Reiter
1997). It is therefore not surprising that a progression of
such theories exists. Theorem 2 however additionally estab-
lishes that our class of action theories is also closed under
progression, since the progression result Σr is of the same
form as the original Σ0. Progression steps may thus be ap-
plied iteratively.

On the other hand, in both the open- and closed-world
case, Lin and Reiter’s progression for “strongly context-
free” theories (for which they show the correspondence to
STRIPS) is a special case of our result. This agrees with
what one would expect from the fact that ADL action de-
scriptions can be viewed as a generalization of STRIPS op-
erators.

Now let us return to our example again to see how the
closed-world progression works in this case. We assume that
we want to progress through the action moveB(home, office)
(abbreviated as m). The first thing to notice is that

Σ0 ∪ Σpre |= Poss(m)

iff, using (11), unique names for actions and the fact that
home and office are both Locations,

Σ0 ∪ Σpre |= At(briefcase, home) ∧ ¬(home = office)

iff, with unique names for objects (recall that our semantics
does not distinguish between objects and actions)

Σ0 ∪ Σpre |= At(briefcase, home)

which is obviously the case, therefore we may proceed. The
reader may verify (considering (6) and (7)) that

• Σ0 |= γ+
At

a x1 x2

mbriefcase office

• Σ0 |= γ+
At

a x1 x2

mpaycheck office

• Σ0 |= γ−At
a x1 x2

mbriefcase home

• Σ0 |= γ−At
a x1 x2

mpaycheck home

and that these are all type-consistent instantiations for
x1, x2 such that γ+

At
a

m respectively γ−At
a

m are entailed by Σ0.
Because there are no disjuncts for moveB in (8) and (9),
γ+

In
a

m and γ−In
a

m are not entailed for any instantiation of x1.
The new initial state then is
I ′ = {At(dictionary, home), In(paycheck),

At(briefcase, office), At(paycheck, office)}.
We obtain the progression Σm consisting of

[m](At(x1, x2) ⊃ (Item(x1) ∧ Location(x2)))
[m](In(x1) ⊃ Item(x1))
[m](Item(x) ≡ ((x = briefcase) ∨ (x = paycheck)∨

(x = dictionary)))
[m](Location(x) ≡ ((x = office) ∨ (x = home)))
[m](Object(x) ≡ (Item(x) ∨ Location(x)))
[m](At(x1, x2) ≡ ((x1 = dictionary ∧ x2 = home)∨

(x1 = briefcase ∧ x2 = office)∨
(x1 = paycheck ∧ x2 = office)))

[m](In(x1) ≡ (x1 = paycheck))
Notice that the only changes, compared to Σ0, are the “[m]”
in front of each formula (to denote the situation after m has
been performed) and the new instances for At.

Outlook: Embedding ADL planning in Golog
The situation calculus (and, as (Lakemeyer & Levesque
2005) showed, also ES) constitutes the foundation9 on which
the semantics of the agent programming language Golog
(Levesque et al. 1997) is defined. The language gives a
programmer the freedom to on the one hand specify the
agent’s behaviour only roughly by using nondeterministic
constructs and where it is the system’s task to find a de-
terministic strategy to achieve its goal. On the other hand,
the programmer may utilize deterministic constructs known
from imperative programming languages. Nonetheless there
is some drawback with this general purpose approach which
can be illustrated best by considering the following com-
pletely nondeterministic Golog program:
achieve(Goal) := while (¬Goal) do (πa) a endWhile
The program corresponds to the task description of find-

ing sequential plans: As long as the condition Goal is
not fulfilled, nondeterministically pick some action a and
execute it. Although it is thus possible to do sequential
planning in Golog, the performance of the Golog system
can usually not compete with current state-of-the-art plan-
ners like FF (Hoffmann & Nebel 2001; Hoffmann 2003;
Hoffmann & Brafman 2005), LPG (Gerevini et al. 2005),
HSP2 (Bonet & Geffner 2001a), Fast Downward (Helmert
& Richter 2004) or TLPlan (Bacchus & Ady 2001). The
reason is that current Golog implementations resolve non-
determinism by a simple backtracking mechanism, whereas
planners resort to efficient techniques like heuristic search,
e.g. (Bonet & Geffner 2001b).

The idea now is, using the results presented here, to em-
bed ADL-based planners (more precisely planners that take
the ADL subset of PDDL as an input language) into Golog,
to combine the benefits of both systems. We envision that
whenever, during the execution of a Golog program, a plan-
ning problem arises (i.e. an achieve(G) subgoal has to be
solved), the necessary parts of the current situation and the
subgoal are transformed into a planning problem instance
and handed over to the planner. Once a solution (a sequence
of actions) is found, it is transformed back into Golog and
the program execution continues, where PDDL serves in

9Valid executions of Golog programs are expressed by a sit-
uation calculus (respectively ES) formula that is entailed by the
underlying basic action theory.



both cases as an interface language. The results in this paper
show that, as long as the action theory underlying the Golog
program is obtained by a translation from an ADL problem
description, this method is semantically well-founded.

Conclusion
We presented an alternative definition for the semantics of
ADL operators as progression in first-order ES knowledge
bases. This establishes the basis for embedding existing
state-of-the-art planners that take ADL as an input language,
into an interpreter for the robot programming language
Golog, to obtain a powerful language that is equally suited
for autonomously constructing complete plans (utilizing the
planner) and letting the programmer specify preconstructed
plans with residual nondeterminism (by means of the usual
Golog constructs) to be resolved by the system. Such an em-
bedding into an ES-based Golog interpreter (currently under
development) is the focus of future work, as well as giving
semantics to larger fragments of PDDL (Edelkamp & Hoff-
mann 2004; Gerevini & Long 2005b) with features such as
numeric fluents, time, or preferences.

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In Proc.
IJCAI-2001, 417–424.
Bonet, B., and Geffner, H. 2001a. Heuristic Search Planner
2.0. AI Magazine 22(3):77–80.
Bonet, B., and Geffner, H. 2001b. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, Institut für Informatik,
Universität Freiburg.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell. 2(3/4):189–208.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR) 20:61–124.
Gerevini, A., and Long, D. 2005a. BNF description of
PDDL3.0. http://zeus.ing.unibs.it/ipc-5/
bnf.pdf.
Gerevini, A., and Long, D. 2005b. Plan constraints and
preferences in PDDL3. Technical report, Department of
Electronics for Automation, University of Brescia, Italy.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P.
2005. Planning with derived predicates through rule-action
graphs and relaxed-plan heuristics. Technical report, Uni-
versita degli Studi di Brescia, Dipartimento di Elettronica
per l Automazione, Brescia, Italy.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott,
D.; Ram, A.; Veloso, M.; Weld, D.; and Wilkins,
D. 1998. PDDL—the planning domain defini-
tion language. ftp://ftp.cs.yale.edu/pub/
mcdermott/software/pddl.tar.gz.

Helmert, M., and Richter, S. 2004. Fast Downward – mak-
ing use of causal dependencies in the problem represen-
tation. http://ls5-www.cs.uni-dortmund.de/
˜edelkamp/ipc-4/Proc/downward.pdf.
Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proc. ICAPS-05, 71–80.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research 20:291–
341.
Lakemeyer, G., and Levesque, H. J. 2004. Situations, si!
situation terms, no! In Proc. KR2004. AAAI Press.
Lakemeyer, G., and Levesque, H. J. 2005. Semantics for a
useful fragment of the situation calculus. In Proc. IJCAI-
05.
Levesque, H. J., and Lakemeyer, G. 2001. The Logic of
Knowledge Bases. MIT Press.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31:59–84.
Lifschitz, V. 1986. On the semantics of STRIPS. In
Georgeff, M. P., and Lansky, A. L., eds., Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop, 1–
9. Timberline, Oregon: Morgan Kaufmann.
Lin, F., and Reiter, R. 1994. State constraints revisited.
Journal of Logic and Computation 4(5):655–678.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artif. Intell. 92(1-2):131–167.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. J. Artif. Intell. Res.
(JAIR) 12:271–315.
Pednault, E. P. D. 1988. Synthesizing plans that contain
actions with context-dependent effects. Computational In-
telligence 4:356–372.
Pednault, E. P. D. 1989. ADL: Exploring the middle
ground between STRIPS and the Situation Calculus. In
Proc. KR1989, 324–332. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.
Pednault, E. P. D. 1994. ADL and the state-transition
model of action. J. Log. Comput. 4(5):467–512.
Reiter, R. 1991. The frame problem in the situation cal-
culus: a simple solution (sometimes) and a completeness
result for goal regression. Artificial intelligence and math-
ematical theory of computation: papers in honor of John
McCarthy 359–380.
Reiter, R. 2001. Knowledge in action : logical founda-
tions for specifying and implementing dynamical systems.
Cambridge, Mass.: MIT Press. The frame problem and the
situation calculus.


