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Abstract. We consider the realistic case of a GOLOG agent that
only possesses incomplete knowledge about the state of its environ-
ment and has to resort to sensing in order to gather additional infor-
mation at runtime, and where the agent is controlled by a knowledge-
based program in which test conditions explicitly refer to the agent’s
knowledge (or lack thereof). In this paper, we propose a formaliza-
tion of knowledge-based agents that extends earlier proposals by a
form of non-monotonic reasoning that includes Reiter-style defaults.
We present a reasoning mechanism that enables us to reduce projec-
tion queries about future states of the agent’s knowledge (including
nesting of epistemic modalities) to classical Default Logic, and pro-
vide a corresponding Representation Theorem. We thus obtain the
theoretical foundation for an implementation where reasoning sub-
tasks can be handed to an embedded off-the-shelf reasoner for De-
fault Logic, and that supports a (in some respects) more expressive
epistemic action language than previous solutions.

1 INTRODUCTION

The GOLOG [19, 4] family of action languages and the underlying
Situation Calculus action formalism [25, 32] are a popular means for
the high-level control of autonomous agents. Reiter [33] proposed an
extension for realistic scenarios where the agent possesses only in-
complete information about its surroundings and has to resort to run-
time sensing to fulfill its task. In what is called a knowledge-based
program, test conditions may then explicitly refer to the agent’s epis-
temic state, thus enabling it to reason about its own knowledge (or
lack thereof). Based on Scherl and Levesque’s [36] epistemic exten-
sion of the Situation Calculus, he furthermore provided a regression-
based reasoning procedure where deciding subjective queries about
future situations is reduced to standard theorem proving.

Nevertheless, Reiter’s approach came with some limitations. On
the one hand, the notion of only knowing [17] – the fact that the
agent’s knowledge base represents all and only what the agent knows
– is only formalized in a meta-theoretic manner, which makes theo-
retical considerations difficult. More importantly, despite the ability
to explicitly refer to the agent’s knowledge, he considers a very lim-
ited set of queries that disallows referring to future situations, nest-
ing of modal knowledge operators (needed for introspection) and
quantifying-in (necessary to distinguish “knowing that” from “know-
ing what”). Consider the well-known Wumpus domain [34], where
the agent acts in a grid world whose cells (called rooms) may be
occupied by pits (e.g. squares 〈3, 1〉 and 〈4, 4〉 in Figure 1) or the
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Figure 1. Example Wumpus world

Wumpus (square 〈1, 4〉), each of which are lethal (entering such a
room causes the agent to die instantly). Initially, the agent is unaware
about the locations of pits and Wumpus, but in adjacent squares it
can sense a breeze (in the case of pits) or a stench (in the case of the
Wumpus) and use that information to infer which grid cells are safe.

The basic reasoning task during the execution of a knowledge-
based program that controls such an agent is to solve projection
queries, i.e. to decide whether some formula about the agent’s knowl-
edge after the execution of certain actions holds or not. For example,

[move(north)]K([sensebreeze]∃rK(Safe(r))) (1)

expresses that after moving north, it is known that when a
sensebreeze action is performed, the agent will come to know a room
that is safe. Claßen and Lakemeyer [3] proposed a new formalization
of knowledge-based programs based on the modal Situation Calcu-
lus variant ES [11, 10] that includes a modal operator O for only
knowing and that resorts to Levesque and Lakemeyer’s [18] Repre-
sentation Theorem in order to be able to evaluate conditions such as
the above.

So far, this approach requires the agent’s knowledge base to only
contain objective statements about the world such as the fact that a
room r is only safe if it does not contain a pit or the Wumpus:

¬Pit(r) ∧ ¬Wumpus(r) ⊃ Safe(r) (2)

However, often we may want to exploit more of the expressiveness of
ES and add non-objective formulas that represent defaults, and hence
enable non-monotonic reasoning. In the example, we could say that
any room that is potentially unsafe should be considered dangerous
(and thus avoided):

K(Room(r)) ∧M(¬Safe(r)) ⊃ Dangerous(r) (3)

Whereas K(α) is to be read as “α is known”, M(α) means “α is con-
sistent with what is known”. Dangerous(r) then is a default conclu-
sion that may later be withdrawn in face of new information obtained



through sensing: If the agent neither senses a breeze nor a stench near
r, it concludes that that room neither contains a pit nor the Wumpus,
and hence does not regard it as dangerous anymore.

The main contribution of this paper is a new variant of Levesque
and Lakemeyer’s Representation Theorem for knowledge bases that
may contain such non-objective default rules. In the same way that
their method for objective knowledge bases reduces reasoning about
action and knowledge to standard first-order theorem proving, ours
will constitute a similar reduction to a standard non-monotonic rea-
soning method. In particular, we are interested in compatibility to
Reiter’s Default Logic [30], which will allow us to resort to existing
off-the-shelf reasoners for this formalism, including solvers for An-
swer Set Programming (ASP) [6] due to the well-known relationship
to normal logic programs under the stable model semantics [7].

For this purpose, we combine ES with O3L [12, 13], a logic that
establishes an exact correspondence between three variants of the
only-knowing operator O (along with the meaning of M) and dif-
ferent non-monotonic logics. In particular, Levesque’s original defi-
nition of only-knowing [18] corresponds to Moore’s Autoepistemic
Logic [26], in which case M(α) is interpreted as ¬K(¬α). More-
over, varying the semantics of O enables to capture Reiter’s Default
Logic, where the duality between M and K is given up, intuitively
because “ungrounded” extensions are treated differently.3

The remainder of this paper is organized as follows. In Section
2, we introduce our new logic called ESD that can be viewed as
amalgamation of Lakemeyer and Levesque’s ES (which supports ac-
tion, sensing, but no Reiter-style defaults) with the default part of
their logic O3L (which does not include actions and sensing). We
then proceed to show that the new logic is a unifying formalism that
serves as a coherent foundation for the definition of knowledge-based
agents. For this purpose, in Section 3 we extend the standard Situa-
tion Calculus and ES definitions of basic action theories (used for
axiomatizing dynamic domains) to the ESD case, and present a cor-
responding regression operator (used for reducing reasoning about
actions to reasoning about the initial situation). Section 4 then con-
tains our main contribution in form of a new variant of Levesque and
Lakemeyer’s Representation Theorem for eliminating knowledge op-
erators, now also accounting for defaults in the agent’s knowledge
base. Section 5 then discusses how to combine all above mentioned
results in order to implement a knowledge-based GOLOG agent ca-
pable of default reasoning. Finally, we review related work and con-
clude.

2 THE LOGIC ESD

In this section we define a dynamic logic of only-knowing and default
reasoning. It can be viewed as an amalgamation of the Default Logic
part of Lakemeyer and Levesque’s static logic O3L [12, 13] with
their modal epistemic Situation Calculus variant ES [11].

2.1 Syntax

The alphabet of ESD consists of the usual logical connectives and
quantifiers, punctuation, parentheses, a countably infinite supply of
first-order variables, equality, rigid predicates of any arity, fluent
predicates of any arity (including the special predicates Poss and
SF for action preconditions and sensing, respectively), a countably

3 The third logic is Konolige’s variant of Autoepistemic Logic using moder-
ately grounded extensions [9]. For simplicity we do not consider it in this
paper. Adapting our definitions and results accordingly is straightforward.

infinite set of standard names (which are syntactically treated as con-
stants), the modal operators [ · ] and � as well as the epistemic modal
operators K, M, OR and OM . The terms are the variables and stan-
dard names. Formulas are defined inductively as follows:

• if t1, . . . , tk are terms and P is a predicate of arity k, then
P (t1, . . . , tk) is an (atomic) formula;

• if t1 and t2 are terms, then (t1 = t2) is a formula;
• if α and β are formulas, x is a variable, and t a term, then ¬α,

(α ∧ β), ∀xα, K(α), M(α), OM (α), OR(α), [t]α and �α are
also formulas.

Intuitively, K(α) is read as “α is known by the agent”, while M(α)
means “α is consistent with what the agent knows”. Both OM (α)
and OR(α) are to be read as “α is all that is known”, with the differ-
ence that with OM , defaults will be evaluated according to Moore’s
Autoepistemic Logic, whereas OR corresponds to Reiter’s Default
Logic. Finally, [t]αmeans “α holds after executing action t” and �α
stands for “α holds after any number of actions”. Also note that for
simplicity we do not distinguish sorts, but allow any term to be used
as an action.

We treat (α∨β), (α ⊃ β), ∃xα, truth>, and falsity⊥ as the usual
abbreviations. For a finite sequence z = 〈n1, . . . , nk〉 of actions, we
let [z]α stand for [n1] · · · [nk]α. The notion of free and bound vari-
ables is defined in the usual way, and αxt means αwith all free occur-
rences of x replaced by t. A formula without free variables is called
a sentence, and an atomic formula P (n1, . . . , nk) where all ni are
standard names is called primitive sentence. Formulas without any
occurrence of epistemic modal operators are called objective, those
where all predicates appear within the scope of an epistemic modal
operator subjective, those without OR and OM basic, those without
[ · ] and � static, and those without � bounded. A fluent formula is
one that is objective, static and neither mentions Poss nor SF .

2.2 Semantics

The semantics is as follows. Let N denote the set of all standard
names and Z the set of all finite sequences z of standard names, in-
cluding the empty sequence 〈〉. A world w is given by a mapping
from the primitive sentences and Z to truth values {0, 1}, respect-
ing rigidity, i.e. if R is a rigid predicate, then for all z, z′ ∈ Z ,
w[R(~n), z] = w[R(~n), z′]. LetW be the set of all worlds. An epis-
temic state e is given by a set of worlds, i.e. a subset ofW . For two
worlds w and w′ and a sequence z ∈ Z , w 'z w′ (read: w and w′

agree on the sensing for z) is inductively defined as follows:

• w '〈〉 w′ for every w and w′;
• w 'z·n w′

iff w 'z w′ and w[SF (n), z] = w′[SF (n), z].

We are now ready to define the truth of sentences. ESD, similar as
O3L, uses two epistemic states to interpret formulas, one to interpret
formulas with K, the other to interpret formulas with M. We need
this distinction because the duality M(α) ≡ ¬K(¬α) only holds in
case of Moore’s Autoepistemic Logic (i.e. OM ), but not for Reiter’s
Default Logic (i.e. OR).

Formally, for any epistemic states e1, e2, world w and z ∈ Z , a
sentence α is true wrt. e1, e2, w, z, which we write as e1, e2, w, z |=
α, as follows:

1. e1, e2, w, z |= P (n1, . . . , nk)
iff w[P (n1, . . . , nk), z] = 1;



2. e1, e2, w, z |= (n1 = n2)
iff n1 and n2 are identical standard names;

3. e1, e2, w, z |= ¬α iff e1, e2, w, z 6|= α;
4. e1, e2, w, z |= α ∧ β

iff e1, e2, w, z |= α and e1, e2, w, z |= β;
5. e1, e2, w, z |= ∀xα

iff e1, e2, w, z |= αxn for every standard name n;

The above rules define the truth of atoms, equalities, and the usual
logical connectives in the presence of standard names. The latter can
be thought of as a countably infinite set of constants that satisfy the
unique names assumption and an infinitary version of domain clo-
sure. Thus, first-order quantifiers can be interpreted substitutionally.
Next, action modalities are defined similar as for ES:

6. e1, e2, w, z |= [n]α
iff e1, e2, w, z · n |= α;

7. e1, e2, w, z |= �α
iff e1, e2, w, z · z′ |= α for all z′;

Here, z · n refers to the result of concatenating standard name n at
the end of sequence z. The meaning of belief modalities is given as
follows:

8. e1, e2, w, z |= K(α)
iff for every w′ ∈ e1 with w′ 'z w, e1, e2, w′, z |= α;

9. e1, e2, w, z |= M(α)
iff for some w′ ∈ e2 with w′ 'z w, e1, e2, w′, z |= α;

10. e1, e2, w, z |= OM (α)
iff for every w′ with w′ 'z w,

e1, e2, w
′, z |= α iff w′ ∈ e1;

11. e1, e2, w, z |= OR(α)
iff for all e′ with e1 ⊆ e′,

e′, e2, w, z |= OM (α) iff e′ = e1.

That is to say a sentence is known iff its true in every world of e1,
while a sentence is consistent with what is known iff some world of
e2 satisfies it. OM coincides with Levesque’s only-knowing (essen-
tially the “if” in the case of K becomes an “iff”), while OR is a
variant that allows to make the connection to Reiter’s Default Logic.
In any case, only worlds that agree with the “real” world w on the
sensing throughout z are considered, which means additional knowl-
edge is gained by ruling out incompatible possible worlds.

We then define e, w |= α as e, e, w, 〈〉 |= α. A sentence α is valid
(written as |= α) iff e, w |= α for every e and w. A set of sentences
Σ entails α (written as Σ |= α) iff for every e, w such that e, w |= β
for all β ∈ Σ, also e, w |= α.

Note that thus, in the above rules e1 and e2 are usually equal, the
only exception being OR where e′ ranges over all possible supersets
of e1 to ensure its minimality (corresponding to a maximal set of
K-beliefs).

For z = 〈〉, the truth of subjective sentences does not depend on
any world, which is why we often omit the w argument and write
e |= α in that case. Similarly, we may write w |= φ for objective
sentences φ. We will furthermore identify a finite set of sentences
(called a knowledge base) with the singleton sentence given by the
conjunction of all sentences in the set, i.e. we use a loose notation
where a finite set can be used anywhere a formula could.

2.3 Properties

We first note the close relation of ESD to ES and O3L:

Theorem 1. For every sentence α without OR and M, α is valid in
ESD iff α is valid in ES.

Proof. Obvious from the fact that syntax-wise, sentences without
OR and M are a subset of ES and the relevant semantic rules of
ESD coincide with those of ES.

Theorem 2. For every static sentence α, α is valid in ESD iff α is
valid in O3L.

Proof. Obvious from the fact that syntax-wise, static sentences are a
subset of O3L and the semantic rules of ESD coincide with those of
O3L when z = 〈〉.

We may hence directly exploit existing results for these subfor-
malisms. If we move to the propositional case, one particularly inter-
esting result for us here is the following relation to Reiter’s Default
Logic shown by Lakemeyer and Levesque [12], where a Reiter-style
default of the form

α :β1, . . . , βk / γ (4)

is represented by the formula

K(α) ∧M(β1) ∧ · · · ∧M(βk) ⊃ γ. (5)

While Reiter allowed for open defaults that have free variables,
which then stand for the set of all their possible ground instances, we
here make the restriction to propositional theories, following Lake-
meyer and Levesque. A propositional default theory 〈F,D〉 then
consists of a finite set F of static, objective, quantifier-free sentences
as well as a finite set D of closed defaults of the form (4) where all
of α, β1, . . . , βk, γ are static, objective, and quantifier-free.

Theorem 3. Let 〈F,D〉 be a propositional default theory, φ the
conjunction of sentences over F , and δ the conjunction of the rep-
resentations of the defaults D according to (5). Then Γ is a stan-
dard Reiter extension of 〈F,D〉 (as defined in [30]) iff there is an e
such that e |= OR(φ ∧ δ) and Γ is the set of objective beliefs of e,
i.e. Γ = {ψ | e |= K(ψ), ψ static, objective and quantifier-free}.

That is to say an epistemic state that Reiter-only-knows a knowledge
base of the mentioned form corresponds exactly to an extension ac-
cording to Reiter’s default semantics in the sense that they believe
the same objective formulas. As an important corollary, we have:

Corollary 1. OR(φ∧δ) |= K(ψ) iff ψ is an element of every Reiter
extension of 〈F,D〉.

Note that there is a similar correspondence to Autoepistemic Logic
when OM is used instead of OR. The difference between the two,
roughly, is how they deal with “ungrounded” expansions/extensions.
While there is no default theory corresponding to only-knowing
K(p) ⊃ p, Autoepistemic Logic admits an expansion where p is
believed.

We will also heavily rely on the following theorem of [12]. Note
that while there are in general multiple possible e with e |= OR(Σ0)
for any non-objective knowledge base Σ0, the epistemic state that
only-knows an objective knowledge base Φ is unique, and is given
by the set of all worlds satisfying Φ.

Theorem 4. Let Σ0 be a static basic knowledge base without quan-
tifiers. Then there is a finite set of static, objective, quantifier-free
sentences E(Σ0) = {Φ1, . . . ,Φn} such that

|= OR(Σ0) ≡ (OM (Φ1) ∨ · · · ∨OM (Φn)).

Intuitively, if Σ0 is of the right form (that corresponds to a default
theory), E(Σ0) thus represents exactly the possible extensions of Σ0.



3 BASIC ACTION THEORIES AND
REGRESSION

Similar as in the classical Situation Calculus and ES, we use basic
action theories to define the agent’s knowledge about the initial situ-
ation, pre- and postconditions of actions as well as sensing results:

Definition 1. A basic action theory (BAT) is a set of sentences of the
form Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σsense, where

1. Σ0, the initial theory, is a static basic knowledge base describing
the initial state of the world.

2. Σpre is a precondition axiom of the form �Poss(a) ≡ π, where π
is a fluent formula and a its only free variable.4

3. Σpost is a finite set of successor state axioms (SSAs) �[a]F (~x) ≡
γF , one for each fluent predicate F relevant to the application
domain, where γF is a fluent formula whose only free variables
are ~x and a. SSAs incorporate Reiter’s [31] solution to the frame
problem.5

4. Σsense is a sensing axiom of the form �SF (a) ≡ ϕ, where ϕ is a
fluent formula and a its only free variable.

Note that while usually the initial theory Σ0 is assumed to be objec-
tive, we here allow that it contains K and M operators in order to be
able to encode defaults.

Example 1. For the Wumpus domain, a BAT may look as follows.
For simplicity, we ignore shooting arrows and grabbing the gold. The
initial theory Σ0 first of all contains objective formulas encoding the
adjacency relation between rooms as well the initial position of the
agent, which is safe:

Adj (room11,north, room12), . . . ,Adj (room43, south, room44)

At(room11) ∧ Safe(room11)

where safety is defined as in (2). Additionally, there can be default
rules such as (3) that lets the agent assume any room to be dangerous
about which it is not absolutely sure. Moreover, we can use defaults to
make the closed-world assumption about certain parts of the domain:

M(¬Adj (r, d, r′)) ⊃ ¬Adj(r, d, r′)

This means whenever it is safe to assume that two rooms are not
connected, the agent believes that they indeed are not. Hence, the
facts about Adj above list all and only cases where two rooms are
adjacent.

Next, we have a precondition axiom Σpre stating that moving in
a direction d is possible if there is an adjacent room, and sensing
breezes and stenches is always possible:6

�Poss(a) ≡ ∃r, d, r′(At(r) ∧ a = move(d) ∧Adj (r, d, r′)) ∨
a = sensebreeze ∨ a = sensestench

4 Free variables in BAT formulas are implictly assumed to be univer-
sally quantified from the outside. Furthermore, � has lower syntactic
precedence than the logical connectives, so �Poss(a) ≡ π stands for
∀a.�(Poss(a) ≡ π).

5 The [a] construct has higher precedence than the logical connectives, so
�[a]F (~x) ≡ γF abbreviates ∀a.�(([a]F (~x)) ≡ γF ).

6 We abuse notation here when using an action function such as move(d)
as our formalism does not include function symbols. Note that in the ex-
ample, there are exactly four directions, so a quantified formula such as
∃dφ is to be understood as shorthand for the finite disjunction φdn ∨ φde ∨
φds ∨ φdw , where we identify move(n),move(e),move(s),move(w)
with the standard names moven,movee,moves,movew , respectively.
The restriction to standard names only is to keep the formal treatment in
this paper as simple as possible and comes without loss of generality (as
actions will be eliminated by means of regression); an extension by action
functions as used in [3] is straightforward.

For the At fluent, the successor state axiom in Σpost looks like this:

�[a]At(x) ≡ ∃r, d(At(r) ∧ a = move(d) ∧Adj (r, d, x)) ∨
At(x) ∧ ¬∃d a = move(d)

That is to say the position of the agent after action a will be x if a
was moving there from some adjacent room r by going in direction
d, or the agent was already at x and did not move.

Finally, the sensing axiom Σsense expresses that SF is true for
sensebreeze iff there is a pit in an adjacent room, and true for
sensestench iff the Wumpus is nearby. For non-sensing actions such
as move , SF will never hold:

�SF (a) ≡ a = sensebreeze

∧ ∃r, d, r′(At(r) ∧Adj (r, d, r′) ∧ Pit(r′)) ∨
a = sensestench

∧ ∃r, d, r′(At(r) ∧Adj (r, d, r′) ∧Wumpus(r′))

Using BATs, we can also define a regression operator for eliminating
actions from formulas as is done in Reiter’s Situation Calculus. For
the objective case, we have the following:

Definition 2. For any bounded, objective sentence α and BAT Σ
let R[α], the regression of α wrt Σ, be the fluent formula R[〈〉, α],
where for any sequence of terms σ (not necessarily ground),R[σ, α]
is defined inductively on α by:

1. R[σ, (t1 = t2)] = (t1 = t2);
2. R[σ,¬α] = ¬R[σ, α];
3. R[σ, (α ∧ β)] = (R[σ, α] ∧R[σ, β]);
4. R[σ,∀xα] = ∀xR[σ, α];
5. R[σ, [t]α] = R[σ · t, α];
6. R[σ,Poss(t)] = R[σ, πat ];
7. R[σ,SF (t)] = R[σ, ϕat ];
8. R[σ,R(t1, . . . , tk)] = R(t1, . . . , tk) if R is rigid;
9. R[σ, F (t1, . . . , tk)] for fluent F is defined inductively on σ by:

(a) R[〈〉, F (t1, . . . , tk)] = F (t1, . . . , tk));

(b) R[σ · t, F (t1, . . . , tk)] = R[σ, (γF )at
x1
t1
. . .

xk
tk

].

Above, π, ϕ and γF are the right-hand sides of the corresponding
axioms in Σpre, Σsense, and Σpost, respectively.

The general idea here is to subsequently replace formulas of the
form [t]F (~t), Poss(t) and SF (t) by equivalent formulas (that do
not mention actions) as defined by the BAT. Iterating such steps, a
formula involving actions is thus transformed into an equivalent for-
mula that only talks about the initial situation.

When it comes to K operators, consider the following theorem for
ES which still holds in ESD:

Theorem 5.

|= �[a]K(α) ≡
SF (a) ∧K(SF (a) ⊃ [a]α) ∨
¬SF (a) ∧K(¬SF (a) ⊃ [a]α).

Proof. Similar as for ES.

The above is like a successor state axiom for the K operator in the
sense that it relates knowing some formula after an action to the truth
of a formula talking about the situation before executing that action.
The difference is that this is not an axiom, but a theorem of the logic
(i.e. a valid sentence). In addition, we now also have a similar one
for M:



Theorem 6.

|= �[a]M(α) ≡
SF (a) ⊃M(SF (a) ∧ [a]α) ∧
¬SF (a) ⊃M(¬SF (a) ∧ [a]α).

Proof. “⇒”: Let e1, e2, w, z |= [n]M(α). Then for some w′ ∈ e2
with w′ 'z·n w, e1, e2, w′, z · n |= α. If w, z |= SF (n), we
thus have some w′ ∈ e2 with w′ 'z w, w′, z |= SF (n) and
e1, e2, w

′, z |= [n]α, hence e1, e2, w, z |= M(SF (n) ∧ [n]α).
”⇐”: Conversely, let e1, e2, w, z |= SF (n) ⊃ M(SF (n) ∧

[n]α)∨¬SF (n) ⊃M(¬SF (n)∧[n]α) and supposew, z |= SF (n)
(the other case is similar). Then e1, e2, w, z |= M(SF (n) ⊃ [n]α),
hence there is w′ ∈ e2 with w′ 'z w such that w′, z |= SF (n) and
e1, e2, w

′, z |= [n]α. Therefore we have w′ ∈ e2 with w′ 'z·n w
and e1, e2, w, z · n |= α, i.e. e1, e2, w, z |= [n]M(α).

Similarly as we use regular SSAs for regressing fluent atoms, we
can therefore use the last two theorems to regress formulas involving
K and M. Formally, we add the following two regression rules to
Definition 2:

10. R[σ,K(α)] is defined inductively on σ by:

(a) R[〈〉,K(α)] = K(R[〈〉, α]);

(b) R[σ · t,K(α)] = R[σ, κat ],
where κ is the right-hand side of the equivalence in Theorem 5.

11. R[σ,M(α)] is defined inductively on σ by:

(a) R[〈〉,M(α)] = M(R[〈〉, α]);

(b) R[σ · t,M(α)] = R[σ, µat ],
where µ is the right-hand side of the equivalence in Theorem 6.

Example 2. Consider the BAT from Example 1. The reader may ver-
ify that the following are true for regressing objective formulas:

R[[move(north)]At(x)] = ∃r(At(r) ∧Adj (r,north, x))

R[[a]Safe(x)] = Safe(x)

R[[sensebreeze]α] = α

R[SF (sensebreeze)] = ∃r, d, r′(At(r) ∧Adj (r, d, r′) ∧ Pit(r′))

That is to say after moving north the agent is at x iff x is north of
the agent’s previous position x. As Safe is a rigid predicate, its truth
value does not change by means of any action a. Also, sensebreeze is
a pure sensing action that does not have any effect on fluents, hence
regressing any objective formula α through it leaves α unchanged.

Let PitNearby stand for ∃r, d, r′(At(r)∧Adj (r, d, r′)∧Pit(r′))
and s for sensebreeze . Then we have:

R[〈s〉,K(Safe(x))]

= R[〈〉,SF (s) ∧K(SF (s) ⊃ [s]Safe(x)) ∨
¬SF (s) ∧K(¬SF (s) ⊃ [s]Safe(x))]

= PitNearby ∧K(PitNearby ⊃ Safe(x)) ∨
¬PitNearby ∧K(¬PitNearby ⊃ Safe(x)).

In other words the agent comes to know that room x is safe after
sensing for breezes at its current location just in case there is a pit
nearby and it is known that even when a pit is nearby, x is close
(which can only be when x is not adjacent to the pit), or if there
is no pit nearby and the agent knows that then x is safe (e.g. when
the agent’s position is adjacent to x and it can also rule out that x
contains the Wumpus). As a next step, the above regression will then

have to be checked against the agent’s knowledge about the initial
situation, as we will discuss in the next section. Whether or not x is
actually known to be safe thus also depends on information it has
gathered through previous sensing actions at various locations.

Regression is correct as given by the following theorem:

Theorem 7. Let Σ be a BAT and α a bounded, basic sentence. Then
R[α] is static and

1. OR(Σ) |= K(α) iff OR(Σ0) |= K(R[α]).
2. OR(Σ) |= M(α) iff OR(Σ0) |= M(R[α]).

Proof. Similar to the proof of Theorem 5 in [11], this follows from
the fact that all transformations given by Definitions 2 and Theorems
5 and 6 are equivalence preserving wrt the BAT Σ.

Hence we can reduce reasoning about knowledge and action to rea-
soning about knowledge in the initial situation. In order to also rep-
resent the situation where some history of actions z has already been
executed, we need the following:

Definition 3. Let z = 〈n1 · · ·nk〉 ∈ Z . A sensing result for z is a
formula of the form

k∧
i=1

[n1] · · · [ni−1]± SF (ni),

where each ±SF (ni) is either SF (ni) or ¬SF (ni). As a special
case, > is the only sensing result for 〈〉.

By incorporating sensing results through regression into the
knowledge base, coming to know that α holds after executing z is
equivalent to knowing initially that after z, α will come to hold:

Theorem 8. Let Σ be a BAT, α a sentence, z ∈ Z , and Ψ a sensing
result for z.

1. OR(Σ) ∧Ψ |= [z]K(α) iff OR(Σ ∧R[Ψ]) |= K([z]α).
2. OR(Σ) ∧Ψ |= [z]M(α) iff OR(Σ ∧R[Ψ]) |= M([z]α).

Proof. Easy to show using the fact that for evaluating both K and M
operators, the semantics only considers worlds w′ in the epistemic
states that agree with the real world w on the sensing throughout
z.

Note that since R[Ψ] is a fluent formula, Σ ∧ R[Ψ] again conforms
to our definition of a BAT as we may viewR[Ψ] as being part of the
new BAT’s initial theory, i.e. we set Σ′0 = Σ0 ∪ {R[Ψ]}.

4 REPRESENTATION THEOREM
To deal with knowledge, we propose a variant of Levesque and Lake-
meyer’s [18] Representation Theorem as follows. The general idea is
to recursively replace occurrences of K(α) by objective formulas
that represent the known instances of the corresponding α according
to the knowledge base Σ0.

One important difference of our approach to Levesque and Lake-
meyer’s is that they directly evaluate such K(α) formulas against
the (objective) KB, whereas we defer this evaluation to a later point.
Instead, we first recursively replace every K(α) subformula in the
query by a corresponding Kα, which is a special, reserved predi-
cate not occurring in the original BAT and query, and additionally
augment Σ0 by the statement K(α) ⊃ Kα (and similar for M). In-
tuitively, the new predicate serves as a “flag” to indicate when the



corresponding belief subformula holds in an extension, and the new
default rule ensures that the flag is assigned the correct value. For-
mally:

Definition 4. Given a static basic formula α, ||α|| is defined by

1. ||α|| = α, when α is a static objective formula;
2. ||¬α|| = ¬||α||;
3. ||α ∧ β|| = ||α|| ∧ ||β||;
4. ||∃xα|| = ∃x||α||;
5. ||K(α)|| = Kφ(~x),

where φ = ||α|| and ~x are the free variables in α;
6. ||M(α)|| = Mφ(~x),

where φ = ||α|| and ~x are the free variables in α.

Moreover, Σ0 ↑α is given by:

1. Σ0 ↑α = Σ0, when α is a static objective formula;
2. Σ0 ↑¬α = Σ0 ↑α;
3. Σ0 ↑α ∧ β = Σ0 ↑α ∪ Σ0 ↑β;
4. Σ0 ↑∃xα = Σ0 ↑α;
5. Σ0 ↑K(α) = Σ0 ↑α ∪ {K(φ) ⊃ Kφ(~x)},

where φ = ||α|| and ~x are the free variables in α;
6. Σ0 ↑M(α) = Σ0 ↑α ∪ {M(φ) ⊃ Mφ(~x)},

where φ = ||α|| and ~x are the free variables in α.

We call ||α|| the reduction of α and Σ0 ↑α the augmentation of Σ0.

Example 3. If α = ∃x.K(Room(x) ∧ ¬K(Pit(x)), Σ0 ↑α is Σ0

together with the sentences

K(Pit(x)) ⊃ KPit(x)(x),

K(Room(x) ∧ ¬KPit(x)(x)) ⊃ Kφ(x),

where φ
def
= ||Room(x)∧¬K(Pit(x))|| = Room(x)∧¬KPit(x)(x).

||α|| then is ∃xKφ(x).

The above construction is correct as follows. First, consider the case
without nesting of K and M. If e is an epistemic state such that
e |= OR(Σ0), let

e↑K(φ)
def
= {w ∈ e | if e |= K(φ)~x~n, then w |= Kφ(~n)}

e↑M(φ)
def
= {w ∈ e | if e |= M(φ)~x~n, then w |= Mφ(~n)}

for objective φ where Kφ and Mφ do not appear in Σ0, respectively.
Intuitively, e ↑K(φ) is like e that originally Reiter-only-knows the
knowledge base Σ0, but where in addition all its worlds also set the
right values for the flag predicate associated with K(φ). Then we
have that e ↑K(φ) Reiter-only-knows the augmentation (similar for
M(φ)):

Lemma 1. Let Σ0 be a static basic knowledge base, φ an objective
formula with free variables ~x, and e, e′ and e′′ be epistemic states
such that e |= OR(Σ0), e′ = e↑K(φ) and e′′ = e↑M(φ). Then

1. e |= OR(Σ0) iff e′ |= OR(Σ0 ↑K(φ))
2. e |= OR(Σ0) iff e′′ |= OR(Σ0 ↑M(φ))

and for all standard names ~n,

1. e |= K(φ)~x~n iff for all w ∈ e′, w |= Kφ(~n);
2. e |= M(φ)~x~n iff for all w ∈ e′′, w |= Mφ(~n).

Proof. Since Kφ does not appear in Σ0, e′ behaves exactly like e
except for the fact that Kφ(~n) holds in all its worlds iff K(φ) holds
in e. Similar for e′′ with Mφ(~n) and M(φ).

Thus, we have for the recursive evaluation of formulas:

Lemma 2. Let Σ0 be a static basic knowledge base, α a static basic
formula with free variables ~x, and e and e′ epistemic states such
that e |= OR(Σ0) and e′ = e ↑ α. Then Σ0 ↑ α is a static basic
knowledge base, ||α|| is a static objective formula, and for all worlds
w ∈ e′ and standard names ~n,

e, w |= α~x~n iff w |= ||α||~x~n.

Proof. This can be proven by an induction on the structure of α,
using Lemma 1 for the base cases of K and M without nesting.

We now exploit Theorem 4 guaranteeing that in the propositional
case, Reiter-only-knowing Σ0 boils down to only-knowing one of
finitely many objective knowledge bases:

Theorem 9. Let Σ0 be a static basic knowledge base without quan-
tifiers, E(· · · ) as in Theorem 4, and α a static basic sentence without
quantifiers. Then

1. OR(Σ0) |= K(α) iff for all Φ ∈ E(Σ0 ↑α), Φ |= ||α||.
2. OR(Σ0) |= M(α) iff for all Φ ∈ E(Σ0 ↑α), Φ 6|= ||¬α||.

Proof. This follows from Lemma 2 and Theorem 4.

Thus, testing a formula K(α) or M(α) (possibly containing nested
modalities) against a knowledge base Σ0 (possibly containing de-
faults) is reducible to classical propositional entailment: First, con-
struct the augmented knowledge base Σ0 ↑α and determine its exten-
sions. Then, for every one of the finitely many, objective extensions
Φ check whether the reduced query ||(¬)α|| holds in it. Note that in
the propositional case, the formulas by which we augment Σ0 can be
viewed as default rules of the form (5) with either α or the βj being
empty, i.e. TRUE.

Regarding complexity, suffice it to say (without giving a formal
analysis) that our Representation Theorem will not be harder than
classical default reasoning (i.e., ΣP2 -complete). The reason is that
augmentation adds as many additional defaults as the query contains
belief operators, but their only purpose is to set the right “flags” (val-
ues for the Kα and Mα predicates) to indicate which belief subfor-
mulas hold. The number and the internal structure of extensions re-
mains unchanged.

5 COMPUTING EXTENSIONS

The last two sections gave us the main ingredients for implement-
ing a knowledge-based agent whose main reasoning task during the
execution of a knowledge-based program is to decide queries of the
forms

OR(Σ) ∧Ψ |= [z]K(α)

OR(Σ) ∧Ψ |= [z]M(α)

where Ψ is the sensing result obtained for z. Theorems 8 and 7 tell
us that regression can be used to incorporate sensing results into the
BAT and reduce the problem to reasoning about knowledge in the
initial situation only. In the propositional case that we consider here,



we can then apply Theorem 9 to further reduce the problem to propo-
sitional entailment checks. The only missing piece of the puzzle now
is how to determine the set E(· · · ) from Theorem 4.

There are multiple options. The direct approach would be to make
use of Reiter’s [30] theorem that characterizes extensions by means
of a fixpoint construction. Let 〈F,D〉 be the default theory corre-
sponding to our knowledge base Σ0, where F are the objective for-
mulas (facts), and D the defaults corresponding to formulas of the
form (5). Procedure 1 depicts the algorithm to compute extensions
in pseudo code. After initializing the result to the empty set, we first
determine all objective subformulas Φ in the theory (line 2). We then
consider all subsets of Φ as candidates for extensions (line 3). To
check whether some candidate E actually represents an extension,
we start with the set of facts (line 4) and incrementally add conclu-
sions γ for defaults whose prerequisite α holds in the previous set
and whose negated justifications ¬βj are not in E (line 8). Since
there are only finitely many defaults and we consider propositional
logic, this process will eventually converge to a fixpoint (line 9). If
the resultingEi is equivalent toE (line 10), we have found an exten-
sion and include E in the result.

Procedure 1 Calculating Default Extensions
Input: a propositional default theory 〈F,D〉
Output: its set of extensions E(〈F,D〉)

1: E(〈F,D〉) := ∅;
2: Φ := F ∪ {α, β1, . . . , βk, γ | α :β1, . . . , βk / γ ∈ D};
3: for all E ⊆ Φ do
4: E0 := F ;
5: i := 0;
6: repeat
7: i := i+ 1;
8: Ei := Ei−1 ∪ {γ | α :β1, . . . , βk / γ ∈ D,

Ei−1 |= α, ¬β1, . . . ,¬βk 6∈ E};
9: until Ei = Ei−1;

10: if for all φ ∈ Φ, E |= φ iff Ei |= φ then
11: E(〈F,D〉) := E(〈F,D〉) ∪ {E};
12: end if
13: end for
14: return E(〈F,D〉)

Note that similar to our Representation Theorem, we here again re-
duce the overall reasoning task to a finite number of entailment tests
in classical propositional logic. Hence, in principle, all we need is a
propositional reasoner (SAT solver).

However, instead of coming up with a complete re-implementation
of a default reasoner, it is also possible to make use of existing off-
the-shelf systems, i.e. resort to a default reasoner such as XRay [27]
or DeReS [2]. Another interesting option is to employ state-of-the-
art ASP solvers implementing the stable model semantics, for exam-
ple clasp7. Gelfond and Lifschitz [7] showed the relation of stable
models of a normal logic program with classical negation to a frag-
ment of Reiter’s Default Logic. The key idea is to identify a default

B1 ∧ · · · ∧Bk :Bk+1, . . . , Bk+m /A (6)

with the rule

A← B1, . . . , Bk, not(Bk+1), . . . , not(Bk+m) (7)

and a fact

B1 ∧ · · · ∧Bk ⊃ A (8)

7 http://www.cs.uni-potsdam.de/clasp

with a rule

A← B1, . . . , Bk (9)

not containing negation as failure. Here, A and the Bi are literals
and L denotes the complement of L. The correspondence then is as
follows:

Theorem 10. Let P be a program consisting of rules of the form (7)
and (9), DP the corresponding defaults (6) and FP the correspond-
ing facts (8). Then M is a stable model of P iff M is a maximal set
of atoms such that Th(FP ∪M) is an extension of 〈FP , DP 〉.

Therefore, if we require Σ0 to only contain formulas of the form
(7) and (9), we can use an ASP solver to compute the extensions
E(Σ0). Note that in general however, subformulas in facts and de-
faults of our knowledge base are not necessarily literals, but can be
of arbitrary form, in particular when they originate from regressed
sensing resultsR[Ψ] or K(φ) and M(φ) subformulas introduced by
augmentation. One possible direction for future work is identifying
syntactical restrictions on the knowledge base and queries such that
the required form can be enforced. Alternatively, we can look for a
way to exploit results relating SAT to ASP: Every Boolean formula
φ can be mapped to a normal logic program Pφ such that the stable
models of Pφ correspond precisely to the classical, Boolean models
of φ, e.g. for formulas in clausal form [28] or even of arbitrary form
[37].

6 RELATED WORK
The Situation Calculus and default reasoning have been combined
before, albeit differently. Lee and Palla [16] present a reformulation
of Situation Calculus within the stable model semantics, which al-
lows to solve the Frame and Qualification Problems for Lin’s [21]
causal theories, but they do not consider sensing and knowledge. Pag-
nucco et al. [29] describe an account of belief change in the Situation
Calculus based on Default Logic. Strass and Thielscher [38] formal-
ize D, a language for default reasoning about action and change and
descendent of Gelfond and Lifschitz’ [8] languageA, and implement
it using ASP. Ryan moreover [35] presents an ASP-based interpreter
for a fragment of the GOLOG programming language, but also only
for the objective case.

Finally, much more work than what we have discussed here has
been done on relating different non-monotonic formalisms to one
another. For example, Marek and Truszczynski [24] show the corre-
spondence between ASP and the modal logic K45. The close rela-
tion of only-knowing to classical modal systems of belief is further
studied by Lakemeyer and Levesque [15]. Earlier works of integrat-
ing modal epistemic logics with default reasoning are by Lin and
Shoham [23], Lifschitz [20], Amati et al. [1], and Denecker et al. [5],
but either require Autoepistemic Logic to be treated differently from
Default Logic or rely on a very complex semantics with fixed-point
constructions.

7 CONCLUSION
We presented a formalization of knowledge-based agents with de-
faults based on variants of Reiter’s regression and Levesque and
Lakemeyer’s Representation Theorem, thus laying the foundation for
an implementation where backend reasoning tasks can be outsourced
to off-the-shelf default reasoners.

Apart from coming up with an actual implementation and empiri-
cal evaluation thereof, there are many other possible lines for future



work. One particularly promising would be to integrate our results
with [14] where yet another variant of only-knowing is presented
that correctly captures what it would mean to progress [22] a knowl-
edge base with defaults (though only Moore-style) through an ac-
tion in the presence of sensing. The formalization of [12] we have
used here is problematic in that respect as it may cause inconsisten-
cies between the default conclusions holding after an action and the
facts to be forgotten in the process of progression, which is why we
needed to reduce everything to the static case by means of regression.
The proposed solution is to introduce additional modalities that al-
low to distinguish default conclusion from “hard” facts, and it would
be interesting to combine our results with theirs to come up with a
progression-based variant of knowledge-based agents with defaults.
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[28] Ilkka Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Mathematics and Artificial
Intelligence, 25(3–4), 241–273, (1999).

[29] Maurice Pagnucco, David Rajaratnam, Hannes Strass, and Michael
Thielscher, ‘Implementing belief change in the situation calculus and
an application’, in Proceedings of the Twelfth International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013),
eds., Pedro Cabalar and Tran Cao Son, volume 8148 of Lecture Notes
in Computer Science, pp. 439–451. Springer-Verlag, (2013).

[30] Raymond Reiter, ‘A logic for default reasoning’, Artificial Intelligence,
13(1–2), 81–132, (1980).

[31] Raymond Reiter, ‘The frame problem in the situation calculus: A sim-
ple solution (sometimes) and a completeness result for goal regression’,
Artificial Intelligence and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy, 359–380, (1991).

[32] Raymond Reiter, Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems, MIT Press, 2001.

[33] Raymond Reiter, ‘On knowledge-based programming with sensing in
the situation calculus’, ACM Transactions on Computational Logic,
2(4), 433–457, (2001).

[34] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall, 3rd edn., 2009.

[35] Malcolm Ryan, ‘Efficiently implementing GOLOG with answer set
programming’, in Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence (AAAI 2014), eds., Carla E. Brodley and Peter
Stone, pp. 2352–2357. AAAI Press, (2014).

[36] Richard B. Scherl and Hector J. Levesque, ‘Knowledge, action, and the
frame problem’, Artificial Intelligence, 144(1–2), 1–39, (2003).

[37] Igor Stéphan, Benoit Da Mota, and Pascal Nicolas, ‘From (quantified)
boolean formulae to answer set programming’, Journal of Logic and
Computation, 19(4), 565–590, (2009).

[38] Hannes Strass and Michael Thielscher, ‘A language for default reason-



ing about actions’, in Correct Reasoning - Essays on Logic-Based AI in
Honour of Vladimir Lifschitz, eds., Esra Erdem, Joohyung Lee, Yuliya
Lierler, and David Pearce, volume 7265 of Lecture Notes in Computer
Science, pp. 527–542. Springer-Verlag, (2012).


