Interruptible Task Execution with Resumption in Golog

Gesche Gierse and Tim Niemueller and Jens ClaBen and Gerhard Lakemeyer'

Abstract. Mobile robots should perform a growing number of tasks
and react to time-critical events. Thus, the ability to interrupt a task
and resume it later is crucial. While interleaved execution occurs of-
ten in robotics, existing approaches do not consider the fact that inter-
rupting a task and resuming an interrupted task often requires inter-
mediate steps. In this paper we present an approach to interruptible
task execution with resumption. We propose INTRGOLOG which ex-
tends INDIGOLOG by task interruption and resumption through in-
troducing new constructs to determine and fulfill the requirements
of tasks. Our experiments on a service robot and in simulation show
that the ability to switch to another task enables a robot to react in a
swift and reliable fashion to new events.

1 INTRODUCTION

Mobile robots are envisioned to fulfill a growing number of tasks
in the future—in domestic as well as in industrial scenarios. A re-
quired capability then is fask switching. The problem turns out to be
more involved than is obvious. For example, while a robot is clean-
ing up the breakfast table putting tableware into the dishwasher in
the kitchen, the ringing of the doorbell adds the higher prioritized
task to answer the door. Completing the initial task first would take
too long (the mailman might already be gone by the time the robot
answers the door). Hence the robot must interrupt its current task as
soon as possible. But the robot may not be able to perform the new
task right away, e.g., it might be carrying an object that it needs to put
down first in order to have its hand free to open the door. Therefore,
it needs to reason about the necessary steps to resolve conflicts be-
tween requirements when switching tasks. After completing the high
priority task, the robot is expected to resume the interrupted task.
This might involve remembering parameters of the steps performed
when switching: if the robot held an object when the doorbell rang
and placed it down on the quickly accessible kitchen counter, it must
later retrieve the object from there to complete cleaning up the table.

In this paper, we formalize task switching as an extension of
INDIGOLOG accounting for a number of problems that arise. We in-
troduce a new kind of interruption. In contrast to CONGOLOG inter-
rupts which may yield control to other programs at arbitrary points,
we define an extended transition semantics that explicitly handles the
addition, removal, and switching of tasks, which may involve the in-
troduction of intermediate steps for resolving requirement conflicts.
We also provide constructs to avoid task switching in certain parts of
a program, to force the re-execution of sub-programs marked indi-
visible, and a well-defined interruption of durative actions.

For this purpose, we define a new transition relation TTrans
for task operations (adding, removing, switching) on top of

1 Knowledge-Based Systems Group, RWTH Aachen University, Germany,
email: {gierse,niemueller,classen,lakemeyer } @kbsg.rwth-aachen.de

|

Figure 1. Evaluation scenario. The robot moves cups from the table to the
dishwasher, when the doorbell rings. It should then answer the door.

INDIGOLOG’s original T'rans which defines how to execute the re-
spective current task. To determine the intermediate steps necessary
on a task switch, we introduce the new concept of promises. These
are terms denoting asserted or required conditions (of the running or
the interrupting task) used to determine conflicts during task switch-
ing. Promises are formulated with regard to actions, i.e., whether an
action asserts or revokes a promise. We rely on durative actions, such
that long-running actions can be interrupted. They are defined as a
start and an (exogenous) end action. Finally, re-execution sequences
allow to specify parts of a program that must be repeated in full on re-
sumption, e.g., to repeat a sensing action before grasping if the latter
was interrupted.

Our main contribution is the formalization of task interruption and
resumption as an extension of INDIGOLOG’s transition semantics
and the implementation of INTRGOLOG that can deal with cases
where procedures for intermediate steps can be pre-programmed.

We have evaluated the approach both in simulation and on a real
robot. The results show that the proposed system enables the robot to
react to new events in a swift fashion and that it indeed reduces high
priority task latency.

In Section 2, we briefly introduce the Situation Calculus and
GOLOG. Then we explain our approach in detail (Section 3). The
evaluation is described in Section 4. Some related work is discussed
in Section 5 before concluding in Section 6.

2 THE SITUATION CALCULUS AND GOLOG

In this section, we will describe the situation calculus and GOLOG
and some of its variants, upon which our approach builds.

2.1 Situation Calculus

The situation calculus [16] is a dialect of first-order logic that de-
scribes a changing world. It has the sorts situations and actions. A
situation is defined by nested terms of the form do(a, s) starting from



the initial situation So, where do(a, s) describes the situation that oc-
curs after executing action a in situation s. Actions are encoded by
functions and may have preconditions, e.g., the action pick_up (x)
is only possible if the robot has an empty hand. The status of the
world is described by fluents, e.g., holding (x, s) denotes that the
agent is holding object x in situation s. Effects of actions are formal-
ized by successor state axioms. These concepts can be formalized in
a basic action theory D as described in [19].

2.2 GoOLOG

GOLOG [14] is a procedural programming language based on the
situation calculus. The situation calculus is used to find a legal
sequence of actions to satisfy a GOLOG program. The program-
ming language features different programming constructs, such as
sequence, while loops, and conditions. Additionally, it exhibits non-
deterministic constructs, for example 7x.d, where x is chosen non-
deterministically such that § can be legally executed. As an example,
consider a GOLOG program to clear a table:

while Jobject.on_table(object) do
wz.on_table(z)?; pick_up(z); put_on_floor(z)
endWhile

As long as at least one object is on the table, the program non-
deterministically select one, picks it up and puts it down on the floor.

In GOLOG, programs can only be executed offline. That means,
given a GOLOG program, a sequence of actions is computed that ful-
fills the program. Then the whole sequence of actions is executed.
In real-world applications this is unrealistic: a robot has to be able
to sense its surroundings and make decisions based on this. Also, ac-
tions may fail and thus a pre-computed sequence cannot be executed.
Therefore, extensions have been formalized to deal with these prob-
lems, two of which we are going to describe in more detail. In the
following GOLOG will denote the family of programming languages.

2.2.1 CONGOLOG and INDIGOLOG

CONGOLOG [2] is an extension that adds concurrent execution (mul-
tiple programs are executed step-wise interleaved), prioritized inter-
rupts (with a higher priority interrupt handling program urgent ac-
tions can be executed), and exogenous actions (events in the environ-
ment). However, execution still happens offline.

INDIGOLOG [3] extends CONGOLOG by adding sensing and on-
line execution.? Tt interprets programs in an incremental way, such
that modifications to fluents can alter the trace of situations to pro-
gram completion. Such traces may then depend on data sensed during
execution. These sensing results are stored in a history.

Our work is an extension of INDIGOLOG. It relies on incremental
execution in order to be able to interrupt and resume tasks and to
interleave the execution of multiple tasks.

2.2.2 GOLOG and INDIGOLOG Programs
A GOLOG program § can execute an action (a) or verify a con-

dition (¢7). These basic operations can be combined with the
following control structures: Sequence (d1;d2), non-deterministic

2 Since INDIGOLOG includes CONGOLOG we focus on the former.

branch (d1]62), non-deterministic choice of argument (7z.J), non-
deterministic iteration (6™), if-conditions, while-loops, and proce-
dure calls. To search for a plan ahead of execution, the search opera-
tor X2(4) is used. Concurrently executing two programs is expressed
by 01||02. Additionally, there are prioritized concurrency (01 )) d2),
and concurrent iteration (5'). To interrupt a program whenever con-
dition ¢ holds, one writes (¢ — J).

2.2.3 Transition Semantics

Both CONGOLOG and INDIGOLOG use a transition semantics which
defines how a program ¢ in some situation s can evolve to a program
&’ and a situation s’. As an example consider the programming con-
struct a which executes an action:

Trans(a,s,d’,s’) = Poss(a[s],s) A&’ = nil A s’ = do(a, s)

Here an action a transforms to the program nil which denotes the
empty program. The transition may only be used if it is possible to
execute action a in the current situation s. The resulting situation s’
is the situation that occurs when action a is executed in situation s.

A program § may terminate if it is final, i.e., Final(J, s) holds.
For example, the program nil is final, while the program a is not
final — an action still needs to be executed. The predicate is defined
recursively, e.g., a sequence of actions d1; d2 may terminate if and
only if both §; and § are final.

A history is used to represent a sequence of actions with their sens-
ing results. A history o is of the form o = (a1, 1) - ... (Gn, tin)
if actions a1, ..., a, were executed and each action a; returned the
sensing result ;. It is convenient to use end[o] as an abbreviation
for the end situation of history, defined by: end[e] = So; and induc-
tively, end[o - (a, z)] = do(a, end[c]) [3]. Additionally, Sensed[o]
denotes the formula that contains all sensing results of history o [3].

2.2.4 Online Execution

While GOLOG tries to find a sequence of actions beforehand and then
tries to execute all actions, INDIGOLOG can execute one action and
afterwards decide how to execute the remaining program. This is es-
pecially useful since we can delay decisions to the execution time and
use information gained by sensing actions. The transition semantics
allow to search for the next step of the program. Assume we started
a program and at some later point the program J is remaining to be
executed. Additionally, we have executed some actions and obtained
corresponding sensing results. In the online execution the interpreter
will now either stop, if the remaining program ¢ is final, or find one
transition from J and situation s to 6’ and some situation s’. If s and
s’ are not equal, s” will be of the form do(a, s). In this case the ac-
tion a is executed in the real world. The next step is determined by
the basic action theory, the transition and final rules, and the sensing
results. We also monitor exogenous actions, i.e., actions the agent
observes but does not execute itself. These are added to the history
of executed actions.

2.2.5 Concurrency and Interrupts

In INDIGOLOG, programs which are run concurrently are executed
in an interleaved fashion. An interrupt (¢ — §) executes its pro-
gram ¢ if the condition ¢ holds and no process with higher priority
is executed. It will suspend processes of lower priority. After exe-
cution of the interrupt, suspended processes are continued. A major



INDIGOLOG INTRGOLOG INTRGOLOG

drive _to(table)
grasp(cup)
drive_to(dishw)

1
1
1
1
1
1
I
put_down(cup) : drive_to(door)
1
drive_to(table) ' answer.door re
1
1
1
1
1
1
1
1
1
1
1

drive_to(table) drive_to(table)

grasp(cup) ] grasp(cup)
drive_to(dishw) ===+ i == » 2 adrive_to(dishw)

put_down(cup)

drive_to(door)
- answer_door
drive _to(table)

grasp(plate) = { drive_to(counter)
]
i

postpone

{ drive_to(counter)

grasp(plate)

drive_to(dishw)
put_down(plate)

put_down(cup)

drive_to(dishw) grasp(cup)

put_down(plate)

drive_to(door)
answer_door

Legend

drive_to(dishw)
put_down(cup)

drive_to(table)
grasp(plate)

drive_to(dishw)
put_down(plate)

Task # Promise
Interrupting Task ==+ Interrupt
Promise Steps 4 Conflict

Figure 2.  Task interruption. The left shows how the interrupting task is
simply appended in INDIGOLOG, while INTRGOLOG inserts it as soon as
the interrupt event occurs. The conflict caused by the hand_-used promise
is resolved by introducing suitable steps to postpone and keep the promise.

problem with interrupts is that they yield control to interrupts at ar-
bitrary points. This is a problem for interruptible task execution with
resumption, since additional actions might be necessary before the
switch can be performed, and again when resuming the original task.

As an example why GOLOG interrupts do not suffice for task in-
terruption consider the following program:

(doorbell._rings — answer_door) )) clean-up

If the doorbell rings, the robot will interrupt and answer the door,
otherwise it will clean up. This is a simple approach to interleaved
task execution and it does not work as expected in the envisioned
situations: Consider that the doorbell rings while the robot is about
to put an object in the dishwasher. The switch will be immediate,
thus the robot drives to the door, but it cannot open it, because it
hand is still full. Therefore, the higher prioritized program will yield
control and the clean up may continue. However, the robot is not in
front of the dishwasher anymore, thus the precondition of the put-in-
dishwasher action does not hold anymore. So, without performing in-
termediate steps, the combined interruptible program may no longer
be executable. To avoid this, one would have to anticipate all prob-
lems that may potentially arise, along with possible solutions, and
include those in the interrupt. This is not only tedious, but also error-
prone, particularly when the interplay between multiple interleaved
tasks has to be considered. Instead, we introduce a new notion of in-
terrupts where conflicts are avoided by executing intermediate steps
on interruption.

2.2.6 Durative actions

To represent the concurrency of real-world actions durative actions
[19] can be used. It essentially means splitting up an action in an in-
stantaneous start and an (exogenous) instantaneous end action that
occurs when the action is finished. As long as the action is be-
ing executed, a fluent for this action is true. In between, a pro-
gram may continue or interrupts may be handled. Another possi-
ble representation has been used in CC-GOLOG [7], where an action

wait For(condition) is used to have the agent wait until some for-
mula condition (which depends on continuously changing fluents
such as the robot position) becomes true, and then continue execut-
ing further actions (e.g., stopping the movement). Here however, we
want to allow the interruption of durative actions through exogenous
events. Therefore, we have:

exec_dur(d) def dur_act_start(d); wait_for(d)

wait_for(d) def while dur_flu(d) do wait endWhile

This is the typical case where nothing except waiting (and thereby
checking for interrupts) happens while one durative action is run-
ning. Our formalization also allows to state explicitly in which order
to start durative actions and wait for their termination, and thus inter-
leave such processes.

3 EXTENDED TRANSITION SEMANTICS

The robot should to be able to execute a set of tasks instead of just
one program. Therefore, we define tasks which consist of a program,
a priority, and a unique ID. We extend the transition semantics of
INDIGOLOG to work on a set of tasks. Instead of directly using the
transition predicate T'rans, we introduce 1TT'rans whose semantics
is added on top of the original T'rans predicate. With it a task can be
added or removed. It facilitates task switching and uses the original
Trans to execute the current task.

As described in Section 2.2.5 CONGOLOG interrupts are not suf-
ficient to handle task switches, since intermediate steps may be nec-
essary to interrupt and later resume a task. To ensure that these nec-
essary intermediate steps are performed when switching tasks we in-
troduce two additional concepts.

Re-execution sequences ensure that actions that need to be exe-
cuted together are fully repeated on resumption. For example, the
robot uses a sensing action to detect an object on a table and is about
to grasp it. When interrupted in this situation it needs to sense if the
object is still there on resumption. Essentially, an interrupted task is
modified by restoring an already executed part of the program.

Promises are used to specify necessary conditions for (parts of)
programs and to determine conflicts during task switches. The ba-
sic action theory defines which action asserts or retracts a promise
during execution. When switching to a new task, the system deter-
mines if the promises are conflicting, that is whether any currently
asserted promise is required by the new task. In this case, domain-
specific procedures are used to postpone and later keep the promise.
The postpone program is executed before starting a different task
and the keep procedure is executed before resuming the interrupted
task. Task-specific information may be stored during postponing to
be used when a promise is to be kept again.

As an example, consider Figure 2. The left column shows a clas-
sic INDIGOLOG implementation that requires the two objects to be
cleaned up before answering the door, as the cleanup program was
already running. The two right columns show INTRGOLOG’s behav-
ior. Once the interrupt event occurs (blue dotted line), the respective
action is interrupted and the new higher priority task inserted. But
the robot has grasped an object with its only hand and needs this
very hand free in order to successfully execute the new, higher pri-
oritized task of answering the door. A promise hand_used is defined
by the user. Finishing grasping an object or starting to open a door
would assert the promise, while finishing putting down an object or
finishing opening the door retracts it. When switching after grasping



to opening the door, the robot would postpone the promise hand_used
by driving to a nearby counter and putting down what it is carrying.
However, to later resume the task, it then needs to have the object in
its hand again. The keep procedure will handle this by remembering
where it put the object and then retrieve it (yellow boxes). Afterwards
the previous task can be resumed.

3.1 Task Definition

A task is defined as a tuple 7 = (d,prio, id), where 0 is a pro-
gram as before (that will be modified by T'rans), prio is the task’s
priority and id is a unique ID. As a shorthand notation we will use
prog(T), prio(7) and id(7) to access the program, the priority and
the ID of the task 7, respectively.

We write finite sets 71, ..., 7, of tasks as Q@ = {71,...,7n}. We
will write Q[r; = 7] to denote the task set that is like Q except
with 7; replaced by 7;. Furthermore, Q[prog(r;) = §'] will denote
Q where the program of the task 7; is changed to §’. Also, Q[{T1 =
T1,...,Tk = T4}] will denote that all tasks 7; are changed to 7; for
1 < i < k and the other tasks remain identical to €2.

3.2 Transition Semantics Extension Idea

We define an extension of T'rans called T"I'rans. It will handle
tasks, while referring to the standard INDIGOLOG transition seman-
tics to execute a single task. Intuitively, T'rans defines transitions
between configurations consisting of a program ¢§ and a situation s:
(6,5) F (&8, 8"). In contrast TTrans yields transitions of the form
(1,9Q,8) F (7,9, s"), where i,4" are the indexes denoting the cur-
rent task, 2, Q are task sets and s, s are situations. A modification
of Q to €’ can be either adding a new task, removing a task, executing
the current task or switching to the task with highest priority.

Generally, our new top-level transition predicate 71rans uses
fluents that are set by exogenous actions to decide which of the above
possibilities are used in each step of an online execution.

In the following, we will present a number of sufficient condi-
tions for doing a transition step TTrans(i, 2, s,i’,Q’, s"). The ac-
tual axiom defining 7"T'rans is then understood as the completion
of those conditions, i.e., TTrans(i,Q, s,i’,Q’, s") is equivalent to
the disjunction over all right-hand sides of the rules given below. All
situation calculus terms (e.g., fluents, actions, procedures) are set in
monospace, while internal formulas are set in italics.

3.3 Adding a Task

A task is added by an exogenous action add-task(7). We use the
fluent taskupdate which will denote whether there is a new task.
Additionally, if there is a new task, the fluent new_t ask will contain
the new task. If this fluent is set, we will update the set of tasks 2.

TTrans(i,Q,s,i,Q,s") C (D
taskupdate[s] A ITnew. new_task[s] = Thew
AY =QU{Thewt As =5 Ni=14

3.4 Removing a Task

A task can also be removed from €. If a task is final, it can be re-
moved. Similar to T'rans we also add an extended version of Final
called T'F'inal to define if tasks are final. A set of tasks is final if it

is empty and a single task is final if its program is final regarding the
original CONGOLOG’s Final-rules:

TFinal(Q,s)=Q =10
T Final(t,s) = Final(prog(r))

Besides removing final tasks, a task can also be deleted us-
ing an exogenous action remove_task(id). We use the fluent
taskremove to denote that a task deletion is requested. The flu-
ent delete_task will contain the ID of the task that should be
removed. The index ¢ denoting the current task is set to zero to ex-
press that currently no task is selected to execute (the selection of the
new task will be handled by the task switch case described below).

TTrans(i,Q,s,i,Q',s") C ?2)
s =5 A3r € QIJid.(Final(t,s) V taskremove|[s]
A delete_taskl[s] =id) Aid(T) =id
Aid=iDi =0)A(Gd#iDi =1)
AQY =Q\ {7}

3.5 Executing a Task

We can execute the current task if the following conditions hold: A
proper current task is defined by the id ¢ (zero indicates that this is
not the case, either because the current task was finished or removed
by the user). There is neither a new task to be added nor a task to be
removed, and if task switching is allowed, the current task has highest
priority. A step of the program of the current task is the executed
according to the original T'rans:

TTrans(i,Q,s,i,Q,s") C 3)
37, € Quid(r;) =i ANi #0Ai =i A-taskupdate[s]
A —taskremove[s] A (mswitching_allowed]s]
V V7, € Quprio(mi) < prio(r:))
A Fy.Trans(prog(r:),s,v,s' ) A Q' = Qprog(r;) = 7]

3.6 Switching Tasks

Switching a task contains some technicalities, so we will discuss
the corresponding rule in an incremental manner. We will first
present a simple version that does not use any intermediate steps and
then describe the formalities needed for re-execution sequences and
promises and how they are integrated in 7" 7'rans. For now consider
switching to the task with highest priority:

TTrans(i,Q,s,i,Q,s) C 4)
Ir; € Q7 € Qprio(i) < prio(ty)
ANi =4d(m)) A3 € Q.id(Ti) =i
A prio(t;) > prio(r;) A id(7s) # id(75)
ANQ =Q

Next, we include the fluent switching_allowed that enables
and disables task switching. The fluent is toggled by the actions
enable_switching and disable_switching. In the defini-
tion of removing tasks we introduced the case where currently no
task is selected, indicated by ¢ = 0. This is a special case, because
no task can be executed by the 7T rans-rule for execution. So even



if switching is disabled, we need to select a new current task if ¢ = 0.
The resulting rule looks as follows, where the new part is underlined:

TTrans(i,Q,s,i,Q,s) C 5)
(1=0V switching.allowed]s])

A3t € QN1 € Quprio(mi) < prio(t;)
Ai' =4d(my) A (3 € Quid(r:) = i A prio(r;) > prio(T:)
/\id(’i’i) 7& id(T]‘) Vi= 0) /\Q/ =0

3.6.1 Re-execution Sequences

A sequence of actions can be marked as a re-execution sequence.
It is then executed as usual, however, in the case of a task switch
within that sequence, the whole re-execution sequence is executed
from scratch at the resumption of the task.

The programmer uses the construct reexec(d) in their procedures.
Trans then transforms this to re(d, ). Transitions from re(d’, )
will only modify §’, while § remains the original . We extend
(CoNGOLOG’s original) T'rans and F'inal by the following:

Trans(reexec(d), s,re(d,8),s) = True
Trans(re(s, 6rc),s,0",s") =
Fy. Trans(6,s,7v,8' ) A& =re(7y, 6re)
V Final(re(5,6re)) A8 = nil
Final(reexec(d),s) = False
Final(re(d,dre), s) = Final(d,s)
As an example consider the following program:

reexec(exec_dur(detect_cup);
if cups_on_table then
exec_dur(grasp) else noop endIf)
where the robot grasps a cup, if it detected one. If the robot is in-
terrupted when starting to grasp the object, the robot would con-
tinue with the whole program above on resumption. Let the above
program be denoted by reexec(dsq). Internally, this is transformed
to re(dsc, dsc). When executing it in a situation where cups are
sensed, we would eventually reach re(exec_dur(grasp), dsa). If
interrupted at that time, we want to execute re(dsa, 0sc) again on
resumption. Thus, we now extend Formula 5 to replace all occur-
rences of re(d, 6,¢) in the current task by re(dy,, o) before switch-
ing. This is done by the formula reset_re(r;, 7; ).

TTrans(i,Q,s,i,Q,s) C (6)
(i=0V switching.allowed[s])
A3t € QN1 € Quprio(tk) < prio(t;)
A =id(t;) A (31 € Quid(ri) = i A prio(T;) > prio(T:)
Aid(;) # id(7;) Vi=0)
A 37} reset_re(;, 1))
A Q' = Qprog(t;) = 7]
To handle cases where intermediate steps are also necessary before
starting the new task we introduce the concept of promises.

3.6.2 Promises

Promises are terms that denote asserted or required conditions
of programs. They are defined as part of the basic action the-
ory. We introduce new situation independent predicates to de-
scribe promises and which actions assert and retract a promise.

Procedures to postpone and keep a promise need to be defined.
These are the intermediate steps executed before starting the in-
terrupting task and before resuming the interrupted task. We use
promise(prom, order) to denote that the term prom is a promise
and is associated with a numeric value (natural number) order
to indicate in which order to postpone and keep promises in case
of an interruption. To denote that an action a starts a promise
prom, we write asserts_promise(a, prom). For example, a
successful exogenous end_grasp starts the promise has_obj.
A promise stops being asserted when an action retracts it, writ-
ten retracts_promise(a, prom). For example, a successful ex-
ogenous end_grasp starts the promise has_obj and the action
end_put_down ends the promise has_obj.

Internally, the fluent asserted_promise(prom,s) indicates
that the promise prom is asserted in situation s. The successor state
axiom of this fluent is described using the predicates from above:

asserted._promise(p,do(a,s)) =
asserts_promise(a,p) V

asserted-promise(p,s) A "retracts_promise(a,p)

Now we need to define procedures to perform intermediate steps
when switching a task. They are called postpone and keep pro-
cedures. In the case of the promise hand_-used the robot would
need to put away what it is holding with the postpone proce-
dure. To later resume the interrupted task, the robot needs to
hold the object again before continuing the task. Thus, in the
keep procedure it has to find the object again. Our extension pro-
vides two actions and a fluent to help with remembering nec-
essary parameters for keeping a promise. We introduce a fluent
has_param(i, prom, key, s)=value that indicates that the task
with ID ¢ has the parameter value for the postponed promise prom
and the key key in situation s. When postponing a promise, we
can use the action set_param(id, prom, key,value) to set this
fluent. In the case of hand_used we would for example save the
table where we put the object. In the keep procedure we can then
read this value from the fluent. After successfully using the infor-
mation, the action used_param(id, prom, key) resets the fluent
has_param(id, prom, key) to false.

As an example consider the procedures to keep and postpone the
promise hand_used. As domain independent fluents, we first define
which procedure keeps and postpones the promise:

postpone_promise(hand-used, put_somewhere(Id)).

keep_promise(hand_used, get_back_obj(Id)).

To postpone we define a procedure which will ensure that it is
actually holding something, in that case it will sense the nearest table,
go there, put the object down and remember the place.

proc put _somewhere(/d)

sense_holding_obij;

if holding_ob7j then
sense_nearest_table;
?(nearest_table = Table);
exec_dur(drive_to(Table));
exec_dur(put_down);
set_param(hand_used, Id, table, Table)

endIf endProc



Before resuming the task, we will check if a location for an object to
grasp was saved (the promise hand_used could have been in effect
because the robot was opening a door when interrupted, in that case
we do not want to pick up any object. Re-execution sequences will
take care of restarting durative actions that were interrupted during
execution). In that case the robot will go to the table, detect the object
and pick it up. Afterwards it will indicate that it used the information
stored by the postpone procedure, which will reset the fluent for that
promise, ID and key to false.

proc get _back_obj(Id)

if “has_param(hand-used, Id, table) = false then
?(has-param(hand-used, Id, table) = Table);
exec_dur(drive_to(Table));
exec_dur(detect_obj);
if obj_on_table then exec_dur(grasp) endIf;
used_param(hand_used, Id, table)

endIf endProc

So, in case of a task interruption, we need to check if there is a
promise that is currently asserted but may be needed in the interrupt-
ing task (like a hand holding an object and the interrupting task needs
the hand to open the door). To define this, we will look ahead what
promises could be asserted by the interrupting task by extending the
definition of asserts_promise to programs. For example:

asserts_promise(di;dz,p) def

asserts_promise(d1,p) V asserts_promise(dz,p)
. def .
asserts_promise(mv.d,p) < 3. asserts_promise(d,p)

The rules for the remaining constructs are defined in a similar man-
ner. With this lookahead we can describe if a promise is contradict-
ing, i.e., it is asserted and the interrupting task 7 could assert it, too.

. . . def
is_contradicting_promise(prom, order, T, s) =

promise(prom,order) A asserted_promise(prom,s)

A asserts_promise(T, prom)

For all contradicting promises we want to prepend the program of
the interrupting task with the corresponding postpone procedure and
the interrupted task with the respective keep procedure. We define
two helper functions to prepend the current task with these proce-
dures given the current situation s, the set of tasks (2 and the ID j of
the interrupting task:

postpone_contradicting_promises(s,$,j) = Q' def

IreQid(r)=j
AQ = Qprog(T) = disallow_switching;dp;
allow._switching;prog(r)]

where §, = 61;...;0, and 61, .. ., d, are exactly those d; such that

dprom,, order;
is_contradicting_promise(prom;, order;, T,s) A

postpone_promise(prom,d;)

and order; > order; forall ¢ > j.

In a similar manner, we define a function to prepend each task that
asserted a conflicting promise with the associated keep procedure:

keep_postponed_promises(Q, s) = ' dgf

Q' = Q[{prog(r) = di; prog(r) | 7€ QY]

where 67, = dy;...;01 and 41, . .., J, are exactly those J; such that

dprom,;, order;
1s_contradicting_promise(prom;, order;, T, s)
A keep_promise(prom, d;)

A promise.made_to(prom,id(r), s)

and order; > order; for all 7 > j. Notice that the order of the keep
and postpone procedures is reversed to allow dealing with promises
that depend upon other promises.

We can now put both helper functions together to modify the set
of tasks with all postpone and keep procedures:

handle_proms(j,Q, s) = ' def

A Q" = keep_postponed_promises(§2, s)
A Q' = postpone_contradicting_promises(s, ", )
To handle promises when switching a task, we then extend For-
mula 6 to use this function after handling re-execution sequences.

This leads us to the final version of the T Trans-rule for switching a
task:

TTrans(i,Q,s,i,Q,s) C (7
(i =0V switching.allowed[s])
A3t € QN1 € Q.prio(mk) < prio(7;)
Ai' = id(m;) A (31 € Quid(Ti) = i A prio(T;) > prio(T;)
Nid(7;) # id(1;) Vi=0)
A 31! reset_re(Ti, Ti)
A Q' = handle_proms(id(t;), Q1 = 7], 5)

We then take the disjunction over all right hand sides of the for-
mulas for adding, removing, executing and switching tasks to gain a
formula for TT'rans.

3.7 Online Execution

We adapt the definition of online execution presented in [3] to use
TTrans instead of Trans and T F'inal instead of Final: Assume
we started with a set of tasks €2 and a current task 79 (with 7, € o)
in situation So. Then at some later point, we have executed actions
ai,...,ar and have obtained sensing results p1, ..., ux and there-
fore are now in history o = (a1, 1) - ... - (ak, pr) with the set of
tasks €2 left to be executed, where one task 7; € €2 is the current task.
At each execution step, we need to decide what to do next. This can
be either stopping execution if all tasks are finished, executing a step
of the current task, or changing the set of tasks.

e stop, if
DUCUDzs UCze U Sensed|o] E TFinal(Q2, end[o]);
e return the set of remaining tasks 2’ and id ¢’ of the current task, if
DUCUDz, UCze U Sensed|o] E
TTrans(i,Q, end[o],i,Q, end[o]),
and no action is required in this step;



e return action a, 7 and €', if
DUCUDzs UCze U Sensed[o] =
TTrans(i,Q, end|o],i,Q, do(a, end[o])).

Here D is an action theory for INDIGOLOG and C is a set of ax-
ioms defining the predicates T'rans and Final as in INDIGOLOG.
Dz contains the additional basic action theory axioms needed for
the new built-in actions, fluents and procedures. Cz. contains the
axioms for T T'rans as described above and the new 7' F'inal-rules
described in Section 3.4. It also contains the extension of 7Trans and
Final for re-execution sequences from Section 3.6.1. If the online
execution returned an action, that action will be executed on the robot
and sensing results are added to the history.

So analogously to [3] an online execution of a set of programs
) and a current task number ¢ starting from a history o is defined
as a sequence of online configurations (o = ¢, = Q,00 =
)y (in,Qn,0n) such thatforj =0,...,n —1:

DUCUDz, UCze U Sensed|o;] E

TTrans(ij, Qj7 end[aﬂ, ij+la Qj+17 6ﬂd[0’j+1])

gj if end[crj_‘_ﬂ = end[aj]

oj+1 =405 (a,p) if end[o; 1] = do(a, end|o;])
and a returns (.
With this formalization we can now prove that our approach is able

to simulate INDIGOLOG.

Theorem 1. Online execution of the program § in INDIGOLOG is
equivalent to executing the single task (5, prio, 1) in INTRGOLOG,
given the same sensing results and that no tasks are added or re-
moved.

Proof. We show, given the online execution of a program ¢ in INDI-
GOLOG starting from a history o as a sequence of configurations
(6 = 60,0 =00),...,(0n,0n),itholds for all 0 < i < n that

DUCU Sensed[o;] = Trans(d;, end[oi], di+1, end[oit1])
if and only if

DUCUDz,s UCzeUSensed[o;] =
TTrans(l,{(d;,prio, 1)}, end[o:],
L, {{0i+1,prio, 1)}, endloit1]),

where D, C, Dz, and Cz. are defined as above.

We can show this by induction over the configuration steps 1. . . n.
The idea here is that because no new tasks are added, only the
TTrans-rule for execution can be used: Since by prerequisite of the
theorem no tasks are added or removed, the conditions on the right
hand side of the Formulas 1 and 2 do not hold. Also, Formula 7 can-
not be used since there is only one task that may not be removed and
thus no task 7; exists that fulfills this formula (e.g., id(7;) # id(7:)).

Thus, only the rule to execute the current task can be used. Since
it uses the original T'rans-rules this will yield the same results as
applying the semantics of INDIGOLOG. O

4 EVALUATION

As a basis for our implementation we used the standard Prolog im-
plementation of INDIGOLOG.> To show the possibilities offered by

3 Project page at ht tps: //bitbucket .org/ssardina/indigolog

our approach we choose a domestic service robot scenario shown in
Figure 1. The setting consists of two tasks:

Clean up The robot has to clean up a table in the living room by
moving all cups on it to the dishwasher in the kitchen. Since the robot
has only one arm it can only transport one cup at a time.

Answer Door The robot drives to the blue door and opens it.

We focus on the situation, where the robot is currently on the way
from the table to the dishwasher with a cup in its hand when the
doorbell rings. With INTRGOLOG the robot can drive to a nearby
counter, put down the cup and then answer the door. As discussed in
Section 2.2.5 it would be tedious, error prone and not scalable to use
INDIGOLOG to successfully interrupt the clean-up task. Thus, the
robot will drive to the dishwasher and finish loading the cup inside
before answering the door. We compare the times needed to reach
the door after the doorbell rang.

We tested the scenario on a real robot [4] as well as in simulation.
The simulation is based on Gazebo [13] using a Robotino 3 robot.
Benchmarks where made with the simulation on an Intel Core i7-
3770 at 3.40 GHz with 4 cores and hyper-threading enabled.

To determine intermediate steps we use a promise hand_used
and procedures to postpone and keep that promise as described in
Section 3.6.2. For the clean up task the robot drives to a specified
table. As long as there are cups on the table it grasps one and puts it
in the dishwasher. Then it returns to the table and checks if there are
any cups left (or new ones were put there):

proc (clean_up (Table), [
exec_dur (drive_to (Table)),
exec_dur (detect_cup),
while (cups_on_table, [
reexec ([exec_dur (detect_cup),
if (cups_on_table, [grasp],
if (holding_cup, [

(Hn,

reexec ([exec_dur (drive_to (kitchen)),
exec_dur (put_in_dishwasher)]),
reexec ([exec_dur (drive_to (Table)),
exec_dur (detect_cup) 1)1,
[exec_dur (detect_cup)1)1)1) .

When answering the door, the robot drives to the door and opens it.

proc (answer_door, [ exec_dur (drive_to (door)),
exec_dur (open_door) ]) .

The doorbell is modeled as an exogenous action, that adds a task with
the program answer_door and high priority.

To measure the improvement in reaction time, we compare to a
simplified version of the above clean up program in INDIGOLOG.
There, the robot only drives to the table once, picks up an object and
puts it in the dishwasher. Afterwards, it answers the door:

proc (clean_up_once_indigolog(Table), [

exec_dur (drive_to (Table)),

exec_dur (detect_cup),

if (cups_on_table, [grasp]l, [1]),

if (holding_cup, [
exec_dur (drive_to (kitchen)),
exec_dur (put_in_dishwasher),
answer_door], []1)]).

The signal of the doorbell was given to both INDIGOLOG and
INTRGOLOG randomly (but with a similar distribution) after the
robot picked up the cup but had not yet placed it in the dishwasher.



While INTRGOLOG is able to switch to the new task inserted by
the exogenous doorbell action, INDIGOLOG performs its simplified
procedure. The results are shown in Figure 3. Blue dots indicate the
time INDIGOLOG needed from receiving the doorbell until arriving
at the door, red squares the times for INTRGOLOG. The X-axis de-
notes time since the program start. When the doorbell rings early, the
INTRGOLOG time is significantly shorter. In contrast, when the door-
bell sounds close to arriving at the dishwasher, no significant time
advantage can be achieved by putting the cup somewhere else than
the dishwasher. On average, reaction times were about 15 % shorter.
The experiment was run 700 times for both systems.

To make the comparison challenging we simplified the task signif-
icantly for the INDIGOLOG agent. Otherwise, it would have needed
to drive back to the table and put away all cups before answering
the door. This simple scenario already shows the potential of our ap-
proach. With INTRGOLOG the robot is able to react to new events
promptly. In addition, it enables the robot to resume tasks after inter-
ruption. This makes the robot more reliable since given instructions
are finished while unexpected events are handled appropriately.

5 RELATED WORK

Interleaved execution of processes has been used in operating sys-
tems to simulate parallel execution on a single CPU [21]. In contrast
to operating systems, we do not want to simulate parallelism, be-
cause context switches in the real world are very time consuming.
Our approach interleaves a task with a more important one.
Scheduling algorithms can be formalized in GOLOG [18]. How-
ever, the approach uses offline computation and cannot take into ac-
count new tasks or unexpected duration of tasks. Another scheduling-
based approach is Temporal Flexible Golog [5], where low-level
components of a robot are scheduled such that the execution fulfills
time constraints between the components. However, INTRGOLOG
focuses on tasks with intermediate steps between switching tasks. In
our work the term promise denotes that we promise the program-
mer that a specified condition will hold when the program is exe-
cuted, even if the task was interrupted in between. The term has al-
ready been used in a GOLOG context [15]. There the word is used
in a multi-agent setting to describe that one agent promises another
one that it will perform a request. Schiffer et al. [20] propose a self-
maintenance system in READYLOG to ensure that during plan ex-
ecution some predefined constraints are satisfied. They monitor the
execution, detect events and try to fix occurring problems. In con-
trast, we focus on interleaving tasks such that resumption is possible.

I I
° o INDIGOLOG
100 ° mINTRGOLOG [

[ ) . [
[ X ] [ )
80 - 'II' ..'oo
° v I ' l Heg o
il ltitiis.
LU AT
60 |- | I I = " .
it i
o Illl..l L

30 35 40 45 50 55
Time since program start in s

Time needed to answer door in s

Figure 3. Time needed to arrive at the door since the doorbell rang.

A GOLOG-based approach is presented by Kelly and Pearce in [12],
where the focus is on extending GOLOG with true concurrency in
order to allow to coordinate multiple agents acting in parallel. How-
ever, they do not present a mechanism to deal with conflicts arising
during the execution of concurrent programs akin to our promises.

Belief-Desire-Intention (BDI) systems like PRS [10] or AgentS-
peak(L) [17] allow to execute multiple plans in an interleaved or par-
allel manner. In this context the challenges that arise with parallel
execution of multiple plans have been discussed. In [1] summaries of
concurrent hierarchical plans are used to identify associated precon-
ditions and effects that can be used to reduce backtracking. Their for-
malism however only considers propositional, STRIPS-style actions
and is less expressive than GOLOG, in particular regarding loops and
recursive procedures. Harland et al. [8] propose to perform clean-
up steps when suspending and resuming plans. The corresponding
clean-up methods have to be defined for every plan. In comparison,
our promises are action-specific; the intermediate steps necessary to
suspend and resume a certain task are then implicit.

Haythem et al. [11] use a sequence of acts called cascade to detect
failures and to remember what is left to be done after an interruption.
They resume a cascade exactly where stopped and handle failures as
new interrupts. In comparison, we determine intermediate steps in
advance to avoid failures caused by interruptions.

6 CONCLUSION

In this work we described the problem of task interruption and
resumption. We presented a first formalization of an extension of
INDIGOLOG called INTRGOLOG to address some of the simpler
cases of interruption and resumption. The introduction of the se-
mantics predicates TTrans and 1T Final allow our programming
language to handle a set of tasks instead of one program. We intro-
duced new constructs to determine intermediate steps when switch-
ing a task: The concept of promises defines asserted or required con-
ditions of a running or interrupting task and Re-execution sequences
allow to repeat certain parts of a program in full.

The evaluation showed that INTRGOLOG can react quickly to new
events in real-world scenarios. As an example, interrupting a clean
up task with an object in hand and putting it somewhere on the way
leads on average to a 15 % latency reduction compared to bringing
the object to its destination first. After reacting to an interrupting
task, the robot can resume previous tasks without user intervention.
Thereby, INTRGOLOG enables the robot to adapt to changing de-
mands and new events in a swift and reliable fashion.

Opportunities for future work lie for instance in comparing the
estimated time necessary for switching to the time for finishing the
current task. For example, Gianni et al. use an estimation of switch-
ing costs to decide whether to react to stimuli with task switching
[6]. This would avoid unnecessary or inefficient task switching, thus
making our approach more efficient. Another promising possibility
would be to integrate continual planning in GOLOG [9] with our
approach. This would allow to recover promises in a more generic
fashion without specific procedures for each promise. It would also
provide more robustness if keeping a promise fails, e.g., because a
cup cannot be retrieved since it was moved by someone else.

ACKNOWLEDGEMENTS

This work was supported by the German National Science Founda-
tion (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelli-
gent Systems (http://www.hybrid-reasoning.org).



REFERENCES

(1]

(2]

31

(4]

(31

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Bradley J Clement and Edmund H Durfee, ‘Theory for coordinating
concurrent hierarchical planning agents using summary information’,
in AAAI Conference on Artifical Intelligence (AAAI), (1999).

Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque,
‘ConGolog, a concurrent programming language based on the situation
calculus’, Artificial Intelligence, 121(1), (2000).

Giuseppe De Giacomo, Yves Lespérance, Hector J. Levesque, and Se-
bastian Sardina, ‘IndiGolog: A high-level programming language for
embedded reasoning agents’, Multi-Agent Programming: Languages,
Tools and Applications, (2009).

Alexander Ferrein, Tim Niemueller, Stefan Schiffer, and Gerhard Lake-
meyer, ‘Lessons learnt from developing the embodied Al platform Cae-
sar for domestic service robotics’, in AAAI Spring Symposium on De-
signing Intelligent Robots: Reintegrating Al I1, (2013).

Alberto Finzi and Fiora Pirri, ‘Switching tasks and flexible reasoning in
the situation calculus’, Department of Computer and System Sciences
Antonio Ruberti Technical Reports, 2(7), (2010).

Mario Gianni, Panagiotis Papadakis, and Fiora Pirri, ‘Shifting and inhi-
bition in cognitive control’, in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS) - Workshop on Cognitive Neuroscience Robotics,
(2012).

Henrik Grosskreutz and Gerhard Lakemeyer, ‘cc-Golog: Towards more
realistic logic-based robot controllers’, in AAAI Conference on Artifi-
cial Intelligence (AAAI), (2000).

James Harland, David N Morley, John Thangarajah, and Neil Yorke-
Smith, ‘Aborting, suspending, and resuming goals and plans in BDI
agents’, Autonomous Agents and Multi-Agent Systems, (2015).

Till Hofmann, Tim Niemueller, Jens ClaBen, and Gerhard Lakemeyer,
‘Continual planning in Golog’, in AAAI Conference on Artificial Intel-
ligence (AAAI), (2016).

Francois Félix Ingrand, Raja Chatila, Rachid Alami, and Frédéric
Robert, ‘PRS: A high level supervision and control language for au-
tonomous mobile robots’, in IEEE Int. Conf. on Robotics and Automa-
tion (ICRA), (1996).

Haythem O. Ismail and Stuart C. Shapiro, ‘Conscious error recovery
and interrupt handling’, in Proc. of the Int. Conf. on Artificial Intelli-
gence (ICAI), (2000).

Ryan F. Kelly and Adrian R. Pearce, “Towards high-level programming
for distributed problem solving’, in IEEE/WIC/ACM Int. Conf. on In-
telligent Agent Technology (IAT), (2006).

Nathan Koenig and Andrew Howard, ‘Design and use paradigms for
gazebo, an open-source multi-robot simulator’, in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), (2004).

Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin,
and Richard B. Scherl, ‘GOLOG: A logic programming language for
dynamic domains’, The Journal of Logic Programming, 31(1), (1997).
Yisong Liu, Lili Dong, and Yamin Sun, ‘Cooperation model of multi-
agent system based on the situation calculus’, in IEEE/WIC/ACM Int.
Conf. on Intelligent Agent Technology (IAT), (2006).

John McCarthy and Patrick Hayes, ‘Some philosophical problems from
the standpoint of artificial intelligence’, Readings in Artificial Intelli-
gence, (1969).

Anand S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
putable language’, in Agents Breaking Away, Springer, (1996).

Ray Reiter and Zheng Yuhua, ‘Scheduling in the situation calculus: A
case study’, Annals of Mathematics and Artificial Intelligence, 21(2-4),
(1997).

Raymond Reiter, Knowledge in action: logical foundations for specify-
ing and implementing dynamical systems, MIT press, 2001.

Stefan Schiffer, Andreas Wortmann, and Gerhard Lakemeyer, ‘Self-
Maintenance for Autonomous Robots controlled by ReadyLog’, in
IARP Workshop on Technical Challenges for Dependable Robots in Hu-
man Environments, (2010).

Andrew S. Tanenbaum, Modern operating systems, volume 3, Pearson
Prentice Hall, 2009.



