This version of the contribution has been accepted for publication, after peer
review but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-032-06085-3_2

A Tableau System
for First-Order Logic with Standard Names

Jens Clafen[0000—0002—0395-1907] 414 Torben Braiiner[0000—0003—4582—1702]

Institute for People and Technology, Roskilde University, Denmark
{classen,torben}@ruc.dk

Abstract. Levesque and Lakemeyer proposed a logic called £ as a first-
order logic for knowledge representation and reasoning in knowledge-
based systems. A characteristic feature of this logic is that it uses a
countably infinite set of what are called standard names, which are syn-
tactically treated like constants, but which are also isomorphic to a fixed
universe of discourse. Quantifiers in £ are then given a substitutional in-
terpretation. This non-standard semantics not only simplifies the proofs
for certain meta-theoretic properties, but is also exploited in dedicated
reasoning procedures for modal extensions of £ that include notions of
belief, actions, time, and more. However, the only sound and complete
proof system provided for £ so far is a Hilbert-style axiom system, as
well as an iterative reasoning mechanism based on resolution and clause
subsumption. In this paper, we present a tableau system for £, and show
its soundness and completeness. Completeness is proved first by reduc-
tion to the existing axiom system, and involves the cut rule, and then
via Hintikka sets, which does not require the cut rule.

Keywords: Tableau - First-Order Logic - Standard Names - Substitu-
tional Quantification

1 Introduction

The logic £ has been developed and studied by Levesque and Lakemeyer (LL
henceforth) as a formalism for knowledge-based systems (their book [21] gives
a formal introduction and an overview of recent developments). It is a non-
standard first-order logic where so-called standard names serve a dual purpose:
Syntactically they are treated as a (countable infinite) supply of constants, while
semantically they also constitute the fixed universe of discourse, where every
name is interpreted by itself. Thus, standard names provide a well-defined notion
of the identity of an individual, similar to unique object identifiers in database
management. £ forms the basis for a range of modal logics that extend it with
notions of belief [21], non-monotonic inference [18], actions [17], programs and
temporal specifications [6], and combinations thereof [7], to name but a few. Typ-
ically, this involves a type of possible-world semantics where standard names can
be viewed as rigid designators in the sense of Kripke [16]. LL argue that this
assumption is beneficial not only in terms of simplifying the proofs of certain

2 J. Claken and T. Braiiner

meta-theoretical properties, but also for defining specific reasoning procedures.
For example, the logic OL [21] adds modalities for knowledge and “only-knowing?”.
The question of whether only-knowing a knowledge base (KB) k entails knowing
a certain query « can then be reduced to logical entailment in the non-modal
fragment £, where quantified subformulas are handled by considering all stan-
dard names mentioned in k and «, plus one extra name to represent all unmen-
tioned names. In a similar way, £ serves as a base logic in an ongoing line of
research that is concerned with planning [5], verification [29], and synthesis [11].

Interestingly, to the best of our knowledge, so far there is no implementation
of a sound and complete reasoner for £. Moreover, the only sound and complete
proof system that has been provided is a Hilbert-style axiom system, which is
not suitable for actual reasoning. What comes closest is an implementation of a
tractable, yet incomplete reasoner studied in [25], as well as a formal description
of a sound and complete reasoning mechanism based on resolution presented
in [19]. In principle, the latter could serve as the basis for an implementation,
but arguably the method is not analytic. In particular, it involves guessing sub-
stitutions for free variables in query clauses, and then testing for subsumption
against KB clauses, which is impractical.

In the present paper, we propose an alternative, tableau-based proof system
for £ that allows reasoning in a systematic way. To the best of our knowledge,
no analytic proof system in the form of tableau-, sequent- or natural deduction
systems for £ has been published until now. We show our system to be sound,
and give two different completeness results: The first one is via a reduction to
LL’s axiom system as presented in [21], and requires including the cut rule in the
system. It is obviously desirable to avoid the cut rule since it blatantly violates
analyticity, and at a more conceptual level, it violates a fundamental idea behind
tableau systems, namely that tableau rules break down formulas into smaller
formulas. Hence, the result is more of theoretical interest, as it explicates the
relation between our new system and LL’s existing proof theory. Our second
completeness result goes via traditional Hintikka sets, and does not require the
cut rule, so lends itself more towards an implementation.

The remainder of this paper is organized as follows. The following section
introduces £ formally and presents LL’s axiom system for it. In Section 3, we
then present our tableau system for £ and show its soundness. Afterwards, in
Section 4, we provide our two completeness results, one wrt. the axiom system
and using cuts, and one based on Hintikka sets and not requiring cuts. The paper
finishes with a discussion and concluding remarks.

2 The Logic £

In this section, we give brief formal description of £ and its proof theory, based
on the presentation in [21].

A Tableau System for First-Order Logic with Standard Names

2.1 Syntax

In terms of syntax, £ is very similar to the standard first-order predicate calculus
with equality and function symbols, but with the addition of standard names
that can be used in the same way as constant symbols. Formally:

Definition 1 (Vocabulary). Formulas are built from a set of symbols consist-
ing of:
1. a countably infinite supply of variables, written as x,y, z;

2. a countably infinite supply of standard names #1,#2, ..., written schemat-
ically as n,m;

3. countably many predicate symbols P, Q, R, ... with assoctated arity k > 0;
4. countably many function symbols f, g, h,... with associated arity k > 0;

5. equality = and logical connectives 3, V, —.

Definition 2 (Terms). The terms are the smallest set such that

1. every variable is a term;

2. every standard name is a term;

3. if [is a k-ary function symbol and t1, ... tx are terms, then f(t1,...,tx) is

a term.

A term without variables is a ground term, and a ground term with exactly one
function symbol is a primitive term.

Definition 3 (Formulas). The formulas are the smallest set such that

1. if P is a k-ary predicate symbol and ty,. ..ty are terms, then P(t1,...,tx)
is an (atomic) formula;

2. if t1,ty are terms, then (t1 = ta) is a formula;

3. if ¢,¢ are formulas, then so are —¢ and ¢ V Y;

4. if x is a variable and ¢ o formula, then 3x¢ is a formula.

We treat ¢ AN, ¢ DY, ¢ =1, and Vx¢ as the usual abbreviations. The notions
of bound and free variables as well as their scope are defined as usual. By ¢f we
denote the result of simultaneously replacing all free occurrences of variable x
by term t. A sentence is a formula without free variables. A ground atom is an
atomic formula with no variables. A primitive atom is ground atom where every
t; is a standard name.

2.2 Semantics

The only non-standard concepts introduced above are those of primitive terms
and primitive atoms. They are used in the definition of a model-theoretic se-
mantics as given below. Intuitively, an interpretation (called a world) is uniquely
defined by means of which primitive atoms P(nq,...,n) are true in it, and
to which standard names it maps each primitive term f(nq,...,ng). Standard
names n; are always interpreted by themselves, and complex terms and formulas
are then evaluated recursively:

4 J. Claken and T. Braiiner

Definition 4 (Semantics). A world w is a mapping from primitive terms to
standard names, and from primitive atoms to truth values {0,1}. Let W be the
set of all worlds. The value of a ground term ¢ at a world w, written as w(t), is
defined by

1. w(n) = n for every standard name n;

2. w(f(tr,...,tr)) = w[f(n,...,ng)], where n; = w(t;).

The truth of a sentence ¢ in a world w, written w |= ¢, is then given by
wE P(t,...,tk) iff w[P(ny,...,ng)] =1, where n; = w(t;);

w = (t1 = t2) iff w(ty) is the same name as w(ts2);

w = = iff it is not the case that w = ¢;

wEOVY iff wls ¢ orwl=1p;

w = Jxg iff for some name n, w = ¢F.

The notions of validity, satisfiability, and logical entailment are defined as usual.

CrEs o 0~

As mentioned previously, epistemic extensions of £ such as OL employ possible-
world semantics, where an epistemic state is defined as a set of worlds, and a
formula is known/believed if it holds in all accessible worlds. While the inter-
pretation of £ formulas does not require such epistemic states, but only single
interpretations, we use the term “world” for an interpretation here to keep our
terminology consistent with the existing literature.

At least two things here are noteworthy. First, from the second clause for
sentences above it can be seen that equality is a built-in predicate of £ with a
fixed meaning, namely identity over co-referring standard names. Furthermore,
the fifth clause defines quantification to be interpreted substitutionally: A quan-
tified formula such as Vo P(x) is true in w just in case all of P(#1), P(#2),...are
true in it. As a consequence, there is no need for valuations or variable maps,
but, as we will see, properties about sentences can often be proved by a simple
induction over their structure. In such a proof, the case for a quantified sentence
Jz¢ can be reduced to that of its instances ¢F, i.e., sentences of smaller size.

2.3 Axiom System for £

The Hilbert-style axiom system for £ presented by LL is shown in Figure 1.
Again, the two most unusual aspects relate to standard names: Axiom 6 formal-
izes equality as identity over standard names. Moreover, the rule for Universal
Generalization only requires finitely many instances. Here the intuition is that if
we can prove o for every standard name n, it is obviously sound to infer Vzo.
However, a can only mention finitely many standard names nq,...,ng_1. If we
have a proof for every such name, together with one more proof for a single name
ny that is not mentioned in «, that is enough because the proof for any other
unmentioned name n’ can be the same as the one for ny, just with all occurrences
of ny, replaced by n’. The latter works because standard names have no internal
structure, except of being distinct from one another. To illustrate these princi-
ples, Figure 2 shows an example axiomatic proof for the substitutivity property
for functions. We note:

Theorem 1 (|21]). The aziom system for L is sound and complete.

A Tableau System for First-Order Logic with Standard Names

Axioms:
1. aD (8D a)
2. (@>(827)>(a>B)D(ax>7))
3. (+2>-a)D>((=BDa)Dp)
4. Vz(a D B) D (a D VzB), provided that = does not occur freely in «
5. Vza D of
6. (n=n) A (n# m) for any distinct n,m

Rules:

1. From « and o D B, infer § (MP).
2. From oy, ,..., a5, , infer Vza, provided the n; range over all names in «
and at least one not in a (UG).

Fig. 1. The axiom system for £ [21].

L #1=#1 Ax
2. Vz(z =) va
8. f(#1) = F(#1) MP
4. #1=#1D f(#1) = f(F#1) MP
5. #1 £ #2 Ax
6. #1 =#2D f(#1) = f(#2) MP
7 Vy(#1 =y D f(#1) = f(y)) va
8. VaVy(r =y D f(z) = f(y)) va

Fig. 2. Axiomatic proof of the substitutivity property for functions [21].

3 Sentence Tableaux for £

Drawing inspiration from the axiom system for £, we devised a tableau proof
system as depicted in Figure 3. The first row are standard rules for the Boolean
connectives. The second row contains rules for quantification, where the one for
existential quantification is non-standard and incorporates the same idea under-
lying the Universal Generalization inference rule: In addition to considering all
standard names that are mentioned on a branch, it suffices to include one ad-
ditional unmentioned name as representative for all other unmentioned names.
The third row lists rules for handling terms that include functions, one for mak-
ing a case distinction over their possible values (again with the “trick” of using
an extra name), and one for substituting a term for its value. The fourth row
contains the standard rule for closing a branch with two complementary formu-
las, the standard rule for closing a branch using inequality, and a non-standard
rule for closing a branch based on equality over standard names.

Figure 4 shows an example proof for the substitutivity property for functions
to illustrate how existential quantifiers and equality are handled. As for dealing
with terms using the (TCut) and (TSub) rules, Figure 5 depicts a tableau for

6 J. Claken and T. Braiiner

the set {(a =b), P(a,a),~P(b,b)}, also used in |2] to demonstrate how equality
and terms are dealt with in Jeffrey’s [12] and Reeves’ [23] systems. Intuitively,
our system avoids some of the problems that these early systems had in relation
to symmetries and unrestricted substitution, as it deconstructs nested terms in
a systematic fashion and only uses substitution to remove function symbols.
Arguably, our approach aligns more with the ideal of a tableau proof being
analytic.

(¢ V) g VY
(=) - v)
=g, —p ¢ ¢ |
Jra —Jra
—0)
olt],(t=n
(TCut) (TSub)
(t=n1) | - | (t=m) =
¢, ~¢ —(t=1) (n=m)
. — — (=)

Fig. 3. Tableau rules for £. In rules (3) and (TCut), n1, ..., ny range over all standard
names in the branch, plus one eztra. In rules (—3), (TSub), and (#), t can be any ground
term. In rule (TSub), the notation ¢[t] is used to express that ¢ mentions ground term
t, and ¢[n] then means ¢ with every occurrence of ¢ simultaneously replaced by n. In
rule (TCut), t can be any ground term occurring on the branch. In rule (=), n and m
are distinct names.

3.1 Soundness

Theorem 2 (Soundness). The system shown in Figure 8 is sound, i.e., if a
sentence ¢ is satisfiable, then every tableau for ¢ has an open branch.

Proof. As usual, we identify a branch in a tableau with the set of formulas it
contains. Clearly, none of the closure rules are applicable in a satisfiable branch.
We prove by induction that the expansion rules preserve the property that when
being applied to a satisfiable branch, at least one of the resulting branches is
satisfiable. Let B be a satisfiable branch. The claim is obvious for rules (=V),
(=), and (V), and easy to show for rules (—3) and (TSub). The most interesting
cases are rules (3) and (TCut), whose proofs work similarly, so we only show
the one for (3) below. Let w = Jxa. By definition, this means there is a name
n such that w | of. If n is any of the names nq,...,ng, then by assumption
w = BU{aZ}, and we are done. In case that n is a name that is not mentioned

A Tableau System for First-Order Logic with Standard Names

JzIy—(z=y D f(z)=f(y))

Fy-(#1=y D f(#1)=f(y)) @1

T

S(#I=#1D f(#D=F(#1) —~(F#F1=#2D fH#HD=f(#2)) (), 2

~(f(#D=f(#1)) #1 =2 (=V), 3

* * (#);(=), 4

a=b
P(a,a)
~P(b,b)
a=#1 (TCut), a
#1=1b (TSub), 4,1
P(#1,#1) (TSub), 4,2
PN
b=#1 b= #2 (TCut), b
—P(#1,#1) #1=#2 (TSub), 7,3; (TSub), 7,5
x * (1), 68 (=), 8

Fig. 5. Tableau proof for {(a = b), P(a,a), ~P(b,b)}.

8 J. Claken and T. Braiiner

in B and distinct from the extra name (let’s call it n’), then let x be a bijection
from standard names to standard names that swaps n with n’ and leaves all other
names unchanged. Similar as in the proof for Theorem 2.8.8 in [21], let w* be the
world such that w*[a] = w[a*] for every primitive formula «, and w*[t] = w[t*]
for every primitive term ¢, where o* and t* denote the results of simultaneously
replacing every name by its mapping under * in « and ¢, respectively. It follows
by induction that for any formula ¢, w* = ¢ iff w = ¢*. Since B does not
mention n’, B* = B. Hence w* = BU {aZ,

The proof above uses a bijection to formalize the following intuition: Because
standard names are interchangeable in the sense that their only internal prop-
erty is being distinct from one another, one “extra” name used in the (3) and
(TCut) rules is enough as it serves as a placeholder (representative) for all other
unmentioned names.

4 Completeness

As mentioned earlier, we give two different completeness results: The first com-
pleteness result is via a reduction to LL’s axiom system as presented in [21], and
requires including the cut rule in the system. The second completeness result
goes via traditional Hintikka sets, and does not require the cut rule. The two
are independent from another in the sense that we do not need the first result in
the completeness prove for the Cut-free system, but present it merely to explore
the relation of our new system to LL’s original axiom system.

4.1 Completeness via reduction to an axiom system (requiring cuts)

We take it that most readers of the present paper are familiar with the cut rule,
but to make the paper self-contained, we display it anyway:

— (Cut)
¢ | e

So at any stage in the tableau construction, a branch can be split into two
branches, where an arbitrary formula ¢ is added to one of the branches and
the negated formula —¢ is added to the other. The cut rule is usually considered
undesirable, one reason being that it blatantly violates the idea that tableau rules
break down formulas into smaller formulas, but the rule also has its advocates,
see for example the paper [8]. See also the discussion of cuts in tableau systems
in [9], pages 107-108.

Theorem 3 (Completeness). The system comprised of the rules shown in
Figures 3 together with the rule (Cut) is complete, i.e., if a sentence ¢ is unsat-
isfiable, then there is a tableau for ¢ all of whose branches are closed.

Proof. The proof is by means of the axiom system shown in Figure 1. Let ¢ be
unsatisfiable. Then —¢ is valid, and therefore there exists a derivation of —¢ using

A Tableau System for First-Order Logic with Standard Names

1. ~(==Fz—(-a V B) V (~a V =3z-B))

2. ~3z(-a V B) (=), 1
3. ~(-~a v —3z-B) (=), 1
1 a (=V), 3
5 3o (=V), 3
6 ﬂﬁﬁl/ x \ﬁﬂﬁk 3,5
7 (~a Vv B, o (ma v B)n, (—3), 2

/N VRN

8 —a B, - -a i (), 7
9. X e x (1), 48 (1), 68

Fig. 6. Tableau proof for the negation of Axiom 4. Applications of the (——) rule are
not shown. Step 8 exploits the fact that o does not contain z, hence (—a); = —a.

-B
VRN
2. —~aVp (- V B) (Cut), 1

/N
- 8

4, * (1),1,3

Fig. 7. Tableau construction corresponding to the (MP) rule.

the axioms and rules of Figure 1, cf. [21]. We show by induction on the structure
of the derivation that for every derivable formula v, there is a corresponding
tableau for —), all of whose branches are closed.

For the base case, we show that this claim is true for the axioms. Axioms 1-3
represent propositional reasoning, and the corresponding tableaux are straight-
forward, using only the propositional rules (—V), (==), (V), and (L). Axioms 5

10 J. Claken and T. Braiiner

and 6 are similarly easy, requiring an additional application of rules (—3) as well
as (#) and (=), respectively. The tableau corresponding to Axiom 4 is shown in
Figure 6.

For the inductive case, we show that the claim is preserved under the appli-
cation of the (MP) and (UG) rules. In case of (MP), assume that there are closed
tableaux for —a and —~(—a:V 3). Then a closed tableau for =3 can be constructed
as shown in Figure 7, where we can “glue” the given tableaux underneath the -«
and —(—a V) nodes, respectively. The case of (UG) is similar, requiring only
one application each of (——) and (3).

The overall claim now follows from the observation that if there is a closed
tableau for ——¢, there is also one for ¢: Using (Cut), we generate one branch
including —¢, and one including ——¢. The former can be closed immediately
using (L), the latter like in the given closed tableau for ——¢.

An interesting observation is that the above proof did not make use of the
(TCut) and (TSub) rules, so the system is also complete when these rules are
not included, as long as the cut rule is present.

4.2 Completeness via Hintikka sets (no cuts needed)

The overall structure of our completeness proof follows the one from [20], but
we make use of a different tableau construction procedure, based on the lexi-
cographic order given in Definition 7, and used throughout the remaining part
of the completeness proof. Moreover, our proof covers a language that includes
equality and function symbols.

In the following, when ¢ is a primitive term and n a standard name, we call
the formula (t = n) a primitive assignment. In the semantics of £, a world w can
then be identified by (with) the set of primitive atoms and primitive assignments
it, satisfies. Obviously, for two distinct names n and m, it is impossible that both
(t =n) and (¢t = m) are true simultaneously. For the proof, and also for practical
reasons, it will be helpful to include the following admissible rule in our system:

(t=n),(t =m)

*

Proposition 1. Rule (=) is admissible wrt the system given in Figure 3, i.e.,

for every tableau involving the rule, there is an equivalent one not including it.

Proof. If a branch contains (¢ = n) and (¢ = m), then we can add (n = m) by
the (T'Sub) rule, and close it using the (=) rule.

Literals and their complement are defined as usual, and include equalities
and inequalities. The subcategory of flat literals consists of all primitive atoms,
negated primitive atoms, primitive assignments, and equalities and inequalities
over standard names.

Definition 5 (Downward Saturated Set). A set S of L sentences is called
downward saturated if it satisfies the following conditions:

A Tableau System for First-Order Logic with Standard Names

If S contains —(¢ V), then it contains —¢ and —.

If S contains ~—¢, then it contains ¢.

If S contains ¢ V 1, then it contains ¢ or it contains .

If S contains Jxp, then it contains ¢F for some standard name n.

If S contains ~3x¢, then it contains ¢y for all standard names n.

If S contains a non-flat literal @[t] in which some primitive term t occurs,
then for some standard name n, S contains (t = n) and P[n).

S A oo =

Definition 6 (Hintikka Set). A Hintikka set is o downward saturated set that
does not contain a primitive atom and its negation, does not contain an assign-
ment and its negation, does not contain two assignments (t = n) and (t = m)
for the same t and distinct standard names n,m, does not contain —(n = n) for
any standard name, and does not contain (n = m) for any two distinct standard
names mn,m.

We remark that the definition above corresponds to what is called an atomic
Hintikka set by Letz [20] and others, since only inconsistencies among or within
literals are considered. Obviously, a set S that contains both ¢ and —¢ for a
non-literal formula is also unsatisfiable, which is why the (L) rule allows to
close corresponding branches. However, as we will see, for proving completeness,
it suffices to restrict our attention to (flat) literals when closing branches in a
tableau. For the sake of brevity, we will still just write “Hintikka set”, “closed
branch” etc. instead of “atomic Hintikka set”, “atomically closed branch” etc.

The reader may have observed that there is a correspondence between most
clauses listed in Definition 5 and the tableau expansion rules shown in Figure 3,
except for clause 6, which corresponds to rules (T'Cut) and (TSub) combined.
Indeed, these two rules are often applied directly after one another, and it would
be possible to merge them so that branching over standard names and substi-
tuting them for ¢ happens in a single step. However, in practice it makes sense to
keep them separate since there may be branches that already contain an assign-
ment (¢t = n) for the primitive term ¢ in question, and there we would only want
to apply substitution. In such a case, the merged rule would first branch over all
relevant standard names, but then immediately close all but one branches again.

Note that the restriction to primitive terms is sufficient here, as non-primitive
ground terms are handled by unnesting them in a recursive fashion. For example,
if a set S contains P(f(a)) and f(a) = n, then a is a primitive term occurring
in a non-flat literal, and by clause 6, S has to include (a = m), P(f(m)) and
f(m) = n for some name m. Then f(m) is another primitive term occurring in
a non-flat literal, and S subsequently has to include P(n).

Lemma 1 (Hintikka’s Lemma). Fvery Hintikka set is satisfiable.

Proof. Let S be a Hintikka set. The proof is similar to the one presented by Letz
in [20], but simpler as it does not need to resort to Herbrand interpretations.
In a manner of speaking, Herbrand interpretations are directly “built into” L:
A world w is characterized completely by which primitive atoms P(nq,...,ng)
are true in it, and what names it assigns to primitive terms f(nq,...,ng). By

11

12 J. Claken and T. Braiiner

assumption, S does not contain any complementary literals over primitive atoms,
or over assignments, or two assignments (¢t = n), (¢ = m) for distinct names, or
unsatisfiable (in-)equalities over standard names. Note that this also excludes
the case where S contains (¢ # n) for every name n, as by clause 6 in Def. 5, S
then needs to contain some (¢ = n) as well. Therefore, there is a world w that
satisfies all such literals in S.

With these literals as base cases, it then follows by induction on the structure
of terms and formulas that w satisfies all sentences in S. For example, if dz¢ € S,
then by Def. 5, ¢~ € S for some standard name n. By induction, w = ¢7, and
hence w = Jx¢ by the substitutional semantics of L. Also, if ¢[t] is a non-
flat literal in S with some primitive term ¢, then by Def. 5, ¢[n] € S for some
standard name n. Then w = ¢[n] by induction, and since w = (¢t = n), we have
w(t) = w(n). Hence by the semantics of £, w = ¢[t]. The other cases are similar.

In what follows, we need total orders over the set of standard names and the
set of primitive terms. For standard names, we can use the one where #1 is the
first name, #2 the second, and so on. For the primitive terms, we can use any
term order. One difference to the standard first-order case, cf. [20], is that we do
not consider infinite sets of sentences as input, but only a single sentence (see
discussion in the next section).

Definition 7 (Systematic Tableau Construction). We assume that every
node in a tableau T is oplionally equipped with a natural number label, except for
flat literals, which are never assigned a number label. Any such node is assigned
a pair (d,m) where m is the number labeling the node in question and d is the
depth of this node in the tableau tree. We order such pairs with the lexicographic
order, that is, (d,m) < (d',m') iff (1) d < d or (2)d=d and m < m’. Note
that the reflexive closure of this order is a total order.

Given a tableau T with at least one labeled node, let (d,m) be the lexico-
graphically smallest pair assigned to a labeled node in the tableau tree (such a
pair exists because the reflexive closure of the order is total). The leftmost node
assigned the pair (d,m) will be called the usable node of T (this is well-defined
since all nodes assigned (d,m) have the same depth). The systematic tableau
sequence Ty, T1,... for a sentence ¢ is then given by:

— The tableau Ty is a one-node tableau with root formula ¢. If it is not a flat
literal, it is assigned number label 1.
— Ghven tableau Ty, containing usable node N with number label m, Ty is
obtained by expanding each open branch B passing through N in T} to:
1. B® ¢ @, if the formula at N is —(¢ V ¢);
2. B® ¢, if the formula at N is =—¢;
3. B® ¢ | o, if the formula at N is ¢ V 1);
4. By | - | ¢, | b5, if the formula at N is 3x¢, ny,...,ny is the
ordered sequence of all standard names occurring in B, and n' is the
least standard name not occurring in B;
5. B¢l &3z, if the formula at N is -Jx¢ and n is the m-th standard

name;

A Tableau System for First-Order Logic with Standard Names

6. If the formula at N is a non-flat literal ¢, where t is the least primitive
term occurring in ¢, we proceed in two steps:
(a) First, every open branch B through N that does not contain an as-

signment for t is expanded to B® (t =ny1) | - | (t=ny) | (t =n'),
where ny,...,n; is the ordered sequence of all standard names oc-
curring in B, and n' is the least standard name not occurring in
B;

(b) Afterwards, every open branch B through N containing an assign-
ment (t = n) is expanded to B & ¢[n].
The number label of the formula at N is removed. If the formula at N is of
the form —3x¢, every new node of the form —¢7 is assigned the label 1, if
it is not a flat literal, and every new node of the form —3x¢ is assigned the
label m + 1. If the formula at N is not of the form —3x¢, every new node is
assigned the number label 1, if it is not a flat literal. Finally, number labels
of all nodes at all branches that have become closed (including equalities) by
means of the latest expansion are removed.
— If Ty, has no usable node, it is the last tableau in the sequence.

The notation @ is taken from [20]: Expanding a branch B to B & ¢ means
extending B and adding the formula ¢, and expanding B to B @ ¢ | ¢ means
splitting B into two branches, where ¢ is added to one of the obtained branches
and v is added to the other.

In clause 5 of the definition above, we add a new copy of a formula —3Jz¢
whenever we expand by one of its instances. While this technique may not be
standard, it will be helpful in the following proofs, and is also used by Smullyan
[26, pp. 58-59] in the classical first-order case. Moreover, some tableaux provers
such as leanTAP [3] process universally quantified formulas in a similar fashion.

Definition 8 (Saturated Systematic Tableau). Given a systematic tableau
sequence Ty, T, . .. for formula ¢, the saturated systematic tableau of ¢, denoted
T*, is the smallest tree containing all T; as initial segments. Note that T is
guaranteed to exist because our tableau system is non-destructive, i.e., if we
obtain T' by applying a rule to T, T is an initial segment of T'. Furthermore,
T* is infinite just in case the sequence is.

Lemma 2. Consider the saturated systematic tableaw T™ for a systematic tableau
sequence Ty, T1,.... Let N be a node on an open branch B in T* containing a
formula o, which is not a flat literal, and let T; be the first tableau in the se-
quence in which N occurs. Then N is the usable node of some tableau T;, where
J =i

Proof. The proof is based on the following four observations:
— A pair (d,m) is lexicographically smaller than any pair (d + 1,n).

— For any d, there are at most finitely many nodes in the tableau T with
depth less than or equal to d.

13

14 J. Claken and T. Braiiner

— The label assigned to a node in a tableau T}, is either unchanged or removed
in the embedding of T} in Tk11. Moreover, if the node in question is not
selected as usable node in T}, and furthermore the node is on an open branch
in T, then its label will not be removed in the embedding of T} in Tj41.

— If N is not selected as usable node in a tableau T}, then the usable node
of T} is assigned a pair smaller than or equal to the pair assigned to N in
Ty.. Moreover, the usable node of T} has its number label removed in the
embedding of T, in Tjq1.

Since ¢ is not a flat literal, it is assigned a number label m, and hence some pair
(d,m) in the lexicographic order. From the four observations above it follows
that for every step succeeding T;, if there is a strictly positive number of nodes
assigned the pair (d,m) or a smaller pair, then a smaller number of nodes are
assigned the pair (d,m) after the step. Therefore N is selected as the usable
node of some tableau T with j > 4.

Proposition 2. If B is an open branch of a saturated systematic tableau T,
then the set of formulas it contains is a Hintikka set.

Proof. We first prove that the set of formulas at B is downwards saturated. In
the proof we shall frequently make use of the assumption that B is open.

Assume that ¢ is a formula that is not a flat literal on the branch B and let
T be the first tableau in the tableau sequence where ¢ occurs at the branch.
By Lemma 2, the occurrence of ¢ is the usable node of some tableau T}, where
i> k.

If one of the first four clauses in Definition 5 apply, the appropriate nodes
are added to the branch.

If the fifth clause in Definition 5 applies, then ¢ is of the form —3Jz¢. It
follows by inspection of the systematic tableau construction that the occurrence
of ¢ in T}, and hence in T}, is labeled with the number 1, and hence in T}, the
formula —¢%, is added to the branch, as well as a new instance of —3x¢ with
label 2. Now, by Lemma 2, the new occurrence of —=3x¢ is in turn the usable
node of some tableau T;, where ¢ > j + 1, implying that —¢%, and —3z¢ (now
with label 3) are added to B, etc. By induction, it follows that B contains —¢?
for every name n.

If the sixth clause in Definition 5 applies, we observe that an open branch
will never contain more than one assignment for any ¢, and that the number of
function symbols occurring in the formula ¢[n] added to the branch is reduced by
at least one compared to ¢, since ¢[n] is obtained by replacing a primitive term
t occurring in ¢ by n. This concludes the proof that B is downwards saturated.

Finally, note that since B is open, the set of formulas on B cannot contain
both a primitive atom and its complement, or both a primitive assignment and
its complement, or two different assignments for the same term, or —~(n = n) for
any name n, or (n = m) for any distinct names n, m. Hence the set of formulas
at B is a Hintikka set.

A Tableau System for First-Order Logic with Standard Names

Theorem 4 (Completeness). The system shown in Figure 8 is complete, i.e.,
if a sentence ¢ is unsatisfiable, then there is a finite tableau for ¢ all of whose
branches are closed.

Proof. Let T be a saturated systematic tableau for ¢. Then T must be closed:
Suppose it is not, then there is an open branch B, whose formulas by Proposition
2 form a Hintikka set. By Lemma 1, this set would be satisfiable. Since the set
includes ¢, this would mean that ¢ is satisfiable, contradicting the assumption
that this formula is unsatisfiable. Furthermore, T' being closed implies it being
finite: When closing a branch, it will not be extended anymore, so its length
remains finite. Because every node has only finitely many successors, the tree T
is also finite by Konig’s Lemma.

5 Discussion and Concluding Remarks

5.1 Compactness

While tableau systems for classical first-order logic can work on infinite sets [20],
our system only considers a single sentence as input. In case of the former, com-
pactness of the logic is a corollary of the system’s soundness and completeness:
It is guaranteed that there exists a finite, closed tableau for any infinite unsat-
isfiable set. Since that tableau only involves a finite subset of formulas from the
input, this subset is also unsatisfiable. So any infinite set is unsatisfiable just in
case it has a finite unsatisfiable subset.

The restriction to a finite input is necessary in our case due to the fact that
L is not compact, as observed by LL [21]. To see why, consider the infinite set
of sentences {3z P(x), ~P(#1), ~P(#2), ~P(#3), ... }. It is clearly unsatisfiable,
yet every finite subset is satisfiable, as we can then set P to true for some name
that is not mentioned. Intuitively, in order for our system to work on this set, the
(3) rule would need to branch over all standard names, since the initial branch
enumerates all standard names. That is to say, extending our tableau system to
handle infinite sets would require non-finite branching.

In a sense, £ can be viewed as an infinitary logic [4] if we interpret Jxa as the
infinite disjunction \/,, &% and Vzo as the infinite conjunction A, . Specifically,
it bears close resemblance to w-logic [13], which is defined over a countable sets of
constants n € w, and admits deriving Vzp(z) from {¢(n) | n € w}. Compactness
in the classical sense obviously fails for infinitary logics, but there are adapted no-
tions that involve changing the notion of “finite”, including Barwise Compactness
[1], Kreisel Compactness [14], and Kreisel-Barwise Compactness [13]. A deeper
discussion of how these notions might be applicable to £ is beyond the scope
of this paper, and hence left for future work, but in simple terms we conjecture
that it would involve identifying the infinite set {=P(#1),-P(#2),...} with
the equivalent, finite formula Vz—P(z). The set {IzP(x), 7P (#1), " P(#2),...}
then coincides with {3z P(x),Vz—P(z)}, and the latter can be proven unsatisfi-
able using a finite tableau.

15

16 J. Claken and T. Braiiner

5.2 Standard Names and Substitutional Quantification

LL [21] say that the original inspiration for standard names stems {rom “param-
eters” as described by Smullyan [26]. However, there are significant differences.
Smullyan uses standard Tarskian semantics, where the universe can vary be-
tween interpretations, and in particular parameters are not identified with the
domain of discourse, and are not necessarily distinct from one another. In more
modern terminology, parameters are hence merely a countable infinite supply of
constant symbols. Since Smullyan does not consider function symbols of higher
arity, Herbrand bases are then constructed solely from predicates with parame-
ters as arguments.

There has also been a philosophical discussion around substitutional quan-
tification. Kripke [15] rejects earlier criticisms due to Wallace [28] and Tharp
[27], among other things the application of criteria of ontological commitment
resulting in “an ever-present fear that it will be shown, using substitutional
quantification, that nothing exists.” Formally, he sees little difference between
a substitutional and a referential quantifier in the case that (a) the denotation
function for terms is total and (b) all formulae are transparent, i.e., their truth
value does not change due to substitution by equals. (Both conditions obviously
hold for £.) He concludes that there “never was any problem with substitutional
quantification”.

5.3 Implementation

We believe that the presented system lends itself well to an implementation,
but clearly, the next step will be to validate this hypothesis through experimen-
tation. Currently, we are working on developing a prototype in Prolog, taking
inspiration from similar systems for standard first-order logic [3,10,22]. An inter-
esting observation is that our (3) rule is very reminiscent of corresponding rules
that are used for description logic tableaux [24], where they play a vital role
in termination and loop detection, and it will be interesting to study whether
similar results can be obtained for decidable fragments of L.

Acknowledgements

We thank the anonymous reviewers for their helpful comments, in particular for
pointing out an issue in an earlier version of the paper that has now been fixed.

References

1. Barwise, J.: Infinitary logic and admissible sets. Journal of Symbolic Logic 34(2),
226-252 (1969). https://doi.org/10.2307,/2271099

2. Beckert, B.: Equality and other theories. In: D’Agostino, M., Gabbay,
D.M., Hihnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
197-254. Springer Netherlands, Dordrecht (1999). https://doi.org/10.1007/
978-94-017-1754-0_4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A Tableau System for First-Order Logic with Standard Names

Beckert, B., Posegga, J.: IeanT%D: Lean tableau-based deduction. Journal of Auto-
mated Reasoning 15(3), 339-358 (1995)

Bell, J.L.: Infinitary Logic. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall
2023 edn. (2023)

Clafsen, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towards an integration of Golog
and planning. In: Veloso, M.M. (ed.) Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI 2007). pp. 1846-1851. AAAI
Press (2007)

Clafen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Brewka,
G., Lang, J. (eds.) Proceedings of the Eleventh International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2008). pp. 589-599.
AAAT Press (2008)

Clafen, J., Neuss, M.: Knowledge-based programs with defaults in a modal situa-
tion calculus. In: Kaminka, G.A., Fox, M., Bouquet, P., Hiillermeier, E., Dignum,
V., Dignum, F., van Harmelen, F. (eds.) Proceedings of the Twenty-Second Euro-
pean Conference on Artificial Intelligence (ECAI 2016). pp. 1309-1317. IOS Press
(2016). https://doi.org/10.3233/978-1-61499-672-9-1309

D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations with
analytical cut. Journal of Logic and Computation 4, 285-319 (1994)

Fitting, M.: Modal proof theory. In: Blackburn, P., van Benthem, J., Wolter, F.
(eds.) Handbook of Modal Logic, pp. 85-138. Elsevier (2007)

Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, 2nd
edn. (1996)

Hofmann, T., Claken, J.: LTLf synthesis on first-order agent programs in nonde-
terministic environments. In: Walsh, T., Shah, J., Kolter, Z. (eds.) Proceedings
of the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAT 2025). pp.
14976-14986. AAAT Press (2025). https://doi.org/10.1609/aaai.v39i14.33642
Jeffrey, R.: Formal Logic: Its Scope and Limits. McGraw Hill (1967)

Keisler, H.J., Knight, J.F.: Barwise: Infinitary logic and admissible sets. Bulletin
of Symbolic Logic 10(1), 4-36 (2004). https://doi.org/10.2178 /bsl /1080330272
Kreisel, G.: Set theoretic problems suggested by the notion of potential totality.
In: Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959). pp.
103-140 (1961)

Kripke, S.A.: Is there a problem about substitutional quantification? In: Evans,
G., McDowell, J. (eds.) Truth and meaning: essays in semantics, pp. 324-419.
Clarendon Press (1976)

Kripke, S.A.: Naming and Necessity: Lectures Given to the Princeton University
Philosophy Colloquium. Harvard University Press, Cambridge, MA (1980)
Lakemeyer, G.: The situation calculus: A case for modal logic. Journal of
Logic, Language and Information 19(4), 431-450 (2010). https://doi.org/10.1007/
$10849-009-9117-6

Lakemeyer, G., Levesque, H.J.: Only-knowing meets nonmonotonic modal logic. In:
Brewka, G., Eiter, T., MclIlraith, S.A. (eds.) Proceedings of the Thirteenth Inter-
national Conference on the Principles of Knowledge Representation and Reasoning
(KR 2012). AAAT Press (2012)

Lakemeyer, G., Levesque, H.J.: A tractable, expressive, and eventually complete
first-order logic of limited belief. In: Kraus, S. (ed.) Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019). pp.
1764-1771. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/244

17

18

20.

21.

22.

23.

24.

25.

26.
27.
28.

29.

J. Claken and T. Braiiner

Letz, R.: First-order tableau methods. In: D’Agostino, M., Gabbay, D.M., Hahnle,
R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 125-196. Springer
Netherlands, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0_3
Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. College Publica-
tions, second edn. (2022)

Posegga, J., Schmitt, P.H.: Implementing semantic tableaux. In: D’Agostino, M.,
Gabbay, D.M., Hahnle, R., Posegga, J. (eds.) Handbook of Tableau Methods,
pp- 581-629. Springer Netherlands, Dordrecht (1999). https://doi.org/10.1007/
978-94-017-1754-0_10

Reeves, S.V.: Adding equality to semantic tableaux. J. Autom. Reason. 3(3), 225—
246 (1987). https://doi.org/10.1007/BF00243790

Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with
full role negation and identity. ACM Transactions on Computational Logic 15(1),
7:1-7:31 (2014). https://doi.org/10.1145 /2559947

Schwering, C.: A reasoning system for a first-order logic of limited belief. In: Bac-
chus, F., Sierra, C. (eds.) Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (IJCAI 2017). pp. 5246-5248. AAAI Press
(2017)

Smullyan, R.M.: First-Order Logic. Springer, New York [etc.] (1968)

Tharp, L.H.: Truth, quantification, and abstract objects. Notis 5(4), 363-372 (1971)
Wallace, J.: Convention T and substitutional quantification. Nots 5(2), 199-211
(1971)

Zarriefs, B., Clafen, J.: Decidable verification of Golog programs over non-local
effect actions. In: Schuurmans, D., Wellman, M. (eds.) Proceedings of the Thirtieth
AAAT Conference on Artificial Intelligence (AAAI 2016). pp. 1109-1115. AAAI
Press (2016)

