
Foundations for Knowledge-Based Programs using ES

Jens Claßen and Gerhard Lakemeyer
Department of Computer Science

RWTH Aachen
52056 Aachen

Germany
〈classen|gerhard〉@cs.rwth-aachen.de

Abstract

Reiter proposed a semantics for knowledge-based
Golog programs with sensing where program execu-
tion can be conditioned on tests involving explicit ref-
erences to what the agent knows and does not know.
An important result of this work is that reasoning about
knowledge after the execution of actions can be reduced
to classical reasoning from an initial first-order theory.
However, it is limited in that tests can only refer to
what is known about the current state, knowledge about
knowledge is not considered, and the reduction does
not apply to formulas with quantifying-in. This is in
large part due to the choice of the underlying formal-
ism, which is Reiter’s version of the situation calcu-
lus. In this paper we show that, by moving to a new
situation calculus recently proposed by Lakemeyer and
Levesque, we cannot only reconstruct Reiter’s founda-
tions for knowledge-based programs but we can signif-
icantly go beyond them, which includes removing the
above restrictions and more.

Introduction
In the action programming language Golog (Levesque et
al. 1997), whose semantics is based on Reiter’s vari-
ant of the situation calculus (McCarthy & Hayes 1969;
Reiter 2001b), program constructs such as if-then-else or
while statements use tests which are sentences in first-order
logic and refer to what is currently true, that is, after exe-
cution of a sequence of primitive actions which led to this
point in the program. Reiter (2001a) observed that it is use-
ful to extend these tests and allow them to refer explicitly to
the agent’s epistemic state, when the agent has incomplete
information about the world. He formalized this idea based
on Scherl and Levesque’s (2003) extension of the situation
calculus to account for knowledge. A central result of this
work was that the evaluation of tests involving knowledge
can often be reduced to classical first-order reasoning about
the initial state. Reiter also considers sensing actions and
shows how to integrate the result of such actions into the de-
scription of the initial state using ideas similar to (Giacomo
& Levesque 1999).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Nevertheless, the work has a number of limitations. For
one, Reiter has to assume that knowledge is always true,
which may not be realistic in many applications. Perhaps
more importantly, the language in which tests are formulated
is very restricted despite the ability to explicitly mention the
agent’s knowledge. In particular, tests can only refer to what
is known about the current state, knowledge about knowl-
edge is not considered, and the reduction does not apply
to formulas with quantifying-in, which are needed to dis-
tinguish between “knowing that” and “knowing what.” To
illustrate why such features are useful, let us consider an
example involving a robot in an environment consisting of
rooms and boxes, as in Shakey’s world.

Imagine that the robot has only two actions at its disposal:
push(x, y, z), allowing it to push some box x from room y
to room z, and lookFor(x, y), which is a sensing action that
provides the information of whether or not box x is currently
in room y (by using cameras or other means). For simplicity,
we completely abstract from the robot’s position, i.e. there is
no goto action. We simply assume that performing either of
the two actions contains the subtask of first getting to room y
and then do the actual pushing or looking, respectively. An
example program fragment for our robot could then be the
following:

if ¬∃y.Know(At(box1, y)) ∧
Know([lookFor(box1, room1)]∃y.Know(At(box1, y)))

then lookFor(box1, room1);
if Know(Poss(push(box1, room1, room2)))

then push(box1, room1, room2);

That is, if the location of box1 is currently not known, yet it
is known that after looking for box1 in room1 the location
of box1 will be known, then do it. Afterwards, push the box
from room1 to room2, if possible.

Suppose that the robot initially does not know where box1
is located; it only knows that it has to be in one of room1 and
room2. Then it is true that after looking for box1 in room1,
its location will be known: If lookFor(box1, room1) re-
turns “TRUE”, then the box is in room1; if the sensing result
is “FALSE”, it follows from the initial knowledge that it has
to be in room2.1 Therefore, the robot executes the looking

1We make the assumption that the sensing action does not have
any side effects, i.e. performing it does not change the state of the
world, but only the agent’s mental state.



action and either learns that box1 actually is in room1 or
that it is not and thus has to be in room2. Assuming that
pushing box x from y to z is possible whenever x is cur-
rently located at y, then whether or not the robot afterwards
pushes box1 from room1 to room2 depends on the outcome
of the sensing action.

Note the use of knowledge about what is known af-
ter an action has occurred in the example, together with
quantifying-in (“knowing what”), which cannot be ex-
pressed in Reiter’s approach. There are at least two reasons
for this: for one, tests for Reiter are situation-suppressed
formulas and hence cannot refer to future situations; for an-
other, in order to make inferences about what the agent does
not know, a meta-theoretic knowledge closure assumption is
made,2 which is somewhat awkward and makes a principled
account of meta knowledge with quantifying-in difficult, if
not impossible.

In this paper we develop a new foundation for knowledge-
based programs by using the recently proposed variant of
the situation calculus called ES (Lakemeyer & Levesque
2004). It does not use situation terms in the language and
hence can directly serve as the language for tests. In fact,
the tests in the above example are formulas in ES. More-
over, ES has a built-in notion of “this is all I know” adapted
from Levesque’s logic of only-knowing (Levesque & Lake-
meyer 2001), which naturally models meta knowledge with
quantifying-in and allows for false beliefs. The main results
are the following: for the evaluation of tests, we define an
ASK routine to query the agent’s knowledge base and show
that this always reduces to non-modal, first-order reason-
ing, leaning on results obtained in (Lakemeyer & Levesque
2004); for the online execution of sensing actions, we define
an EXE routine and show that, analogous to Reiter, sensing
results can always be incorporated into the knowledge base
using regression; in addition, we define a TELL routine,
which allows users to give information to the agent after any
number of actions have been executed, and we show that this
information can also be added to the knowledge base using
regression. Both user interaction with the knowledge-base
and the execution of knowledge-based programs can thus be
reduced to first-order reasoning. The interaction language
itself is more expressive than Reiter’s as it allows references
to future situations, meta knowledge and “knowing what.”

Knowledge and action has been a concern for a long
time in AI, starting perhaps with Moore’s work (1977),
which was later refined for the situation calculus (Scherl
& Levesque 2003) and its close relative, the fluent calcu-
lus (Jin & Thielscher 2004). Knowledge has also been incor-
porated into other action languages like A (Lobo, Mendez,
& Taylor 1997) and planning formalisms (Petrick & Bac-
chus 2002). Besides Reiter, the work reported here is also
inspired by (Lakemeyer & Levesque 1999), which defines
querying knowledge bases in the logic AOL (Lakemeyer &
Levesque 1998). An important difference is that there rea-
soning relied on progressing a knowledge base after every
action, while we pursue a regression-based approach. Also,

2Roughly, this adds formulas of the form ¬Know(φ) to a theory
for those φ which do not follow from the initial theory.

while AOL does incorporate a notion of only-knowing, it
turned out to be hard to work with, in contrast to ES.

The rest of the paper is organized as follows. First we
introduce the syntax and semantics of ES, followed by a
discussion of basic action theories in ES, which enable
the use of regression and the reduction of reasoning about
knowledge to first-order reasoning. Then we give seman-
tic definitions of ASK,TELL, and EXE, followed by rep-
resentation theorems showing that they reduce to reasoning
or knowledge-base updates involving only non-modal first-
order sentences. The final section concludes the paper.

The Logic ES

The language
The language consists of formulas over symbols from the
following vocabulary:
• variables V = {x1, x2, . . . , y1, y2, . . . , a1, a2, . . .};
• fluent predicates of arity k: F k = {F k

1
, F k

2
, . . .}; for

example, At; we assume this list includes the distin-
guished predicates Poss and SF;

• rigid functions of arity k: Gk = {gk
1
, gk

2
, . . .}; for ex-

ample, box2, push; G0 is also referred to as the set of
standard names;

• connectives and other symbols: =, ∧, ¬, ∀, Know,
OKnow, ¤, round and square parentheses, period,
comma.

To keep the formalism simple, we do not include rigid (non-
fluent) predicates or fluent (non-rigid) functions. The special
predicate Poss is used to define action preconditions and SF
(for sensed fluent value) is used to define what the outcome
of a sensing action is. We will see examples for both below.
The terms of the language are the least set of expressions
such that

1. Every first-order variable is a term;
2. If t1, . . . , tk are terms, then so is gk(t1, . . . , tk).
We let R denote the set of all rigid terms (here, all ground
terms). For simplicity, instead of having variables of the
action sort distinct from those of the object sort as in the
situation calculus, we lump both of these together and al-
low ourselves to use any term as an action or as an object.3
(See (Lakemeyer & Levesque 2005) for a version of ES with
different sorts for objects and actions, as well as rigid predi-
cates and fluent functions.)
Finally, the well-formed formulas of the language form the
least set such that

1. If t1, . . . , tk are terms, then F k(t1, . . . , tk) is an (atomic)
formula;

2. If t1 and t2 are terms, then (t1 = t2) is a formula;
3. If t is a term and α is a formula, then [t]α is a formula;
4. If α and β are formulas, then so are (α ∧ β), ¬α, ∀x.α,
¤α, Know(α), OKnow(α).
3Equivalently, the version in this paper can be thought of as

having action terms but no object terms.



We read [t]α as “α holds after action t”,¤α as “α holds after
any sequence of actions,” Know(α) as “α is known”, and
OKnow(α) as “α is all that is known” or “the agent only-
knows α.” As usual, we treat ∃x.α, (α ∨ β), (α ⊃ β), and
(α ≡ β) as abbreviations. We call a formula without free
variables a sentence.

We use the notation αx
t to mean the result of simultane-

ously replacing all free occurrences of the variable x by the
term t. For convenience, we use the notation [σ]α for any
sequence of actions σ. It is defined inductively as follows:

1. [〈 〉]α
def
= α

2. [r · σ]α
def
= [r][σ]α

In the following, we will sometimes refer to subsets of the
language and use the following terminology:

A formula without is called
Know or OKnow operators objective

OKnow operators basic
fluents, ¤, or [t] outside subjective

the scope of Know or OKnow
¤ operators bounded

¤ or [t] operators static
Know, OKnow, ¤, [t], Poss, SF fluent

While an objective formula only refers to what is true in
the actual world, subjective formulas only refer to what is
known or believed about the world. Bounded formulas may
only refer to what is true after a finite number of actions have
been performed and static formulas can only talk about what
is currently true. Fluent formulas, which are objective and
static, correspond to objective situation-suppressed formulas
in Reiter’s situation calculus.

The semantics
Intuitively, a world w will determine which fluents are true,
but not just initially, also after any sequence of actions. Let
P denote the set of all pairs σ:ρ where σ ∈ R∗ is considered
a sequence of actions, and ρ = F (r1, . . . , rk) is a ground
fluent atom. In general, formulas are interpreted relative to
a model M = 〈e, w〉 where e ⊆ W and w ∈ W , and where
W = [P → {0, 1}]. The e determines all the agent knows
initially, and is referred to as the agent’s epistemic state.

First-order variables are interpreted substitutionally over
the rigid terms R, that is, R is treated as being isomor-
phic to a fixed universe of discourse. This is similar to
OL (Levesque & Lakemeyer 2001), where standard names
are used as the domain. In order to define what an agent
knows or only-knows, we need the notion of two worlds w
and w′ agreeing on the sensing results, that is, the values of
SF, with respect to a sequence of actions σ. This is denoted
by w′ 'σ w and defined inductively by the following:

1. when σ = 〈 〉, w′ 'σ w, for every w′ and w;
2. w′ 'σ·r w iff

w′ 'σ w and w′[σ:SF(r)] = w[σ:SF(r)].
Here is the complete semantic definition: Given a model
M = 〈e, w〉, for any formula α with no free variables, we
define e, w |= α as e, w, 〈 〉 |= α where

e, w, σ |= F (r1, . . . , rk) iff w[σ:F (r1, . . . , rk)] = 1;
e, w, σ |= (r1 = r2) iff r1 and r2 are identical;
e, w, σ |= (α ∧ β) iff e, w, σ |= α and e, w, σ |= β;
e, w, σ |= ¬α iff e, w, σ 6|= α;
e, w, σ |= ∀x. α iff e, w, σ |= αx

r , for every r ∈ R;
e, w, σ |= [r]α iff e, w, σ · r |= α;
e, w, σ |= ¤α iff e, w, σ · σ′ |= α, for every σ′ ∈ R∗;
e, w, σ |= Know(α) iff

for all w′ 'σ w, if w′ ∈ e then e, w′, σ |= α;
e, w, σ |= OKnow(α) iff

for all w′ 'σ w, w′ ∈ e iff e, w′, σ |= α.

When α is a sentence, we write e, w |= α. When α is
objective, we write w |= α; when α is subjective, we write
e |= α. When Σ is a set of sentences and α is a sentence, we
write Σ |= α (read: Σ logically entails α) to mean that for
every e and w, if e, w |= α′ for every α′ ∈ Σ, then e, w |= α.
Finally, we write |= α (read: α is valid) to mean {} |= α.

Notice that the rules for knowing and only-knowing only
consider worlds in e which agree with w on the sensing for
σ. It is not hard to see that Know is just a weak S5 op-
erator (Chellas 1980). Note also that OKnow differs from
Know only in that the “then” is replaced by an “iff.” This
has the effect that e has to be maximal for a sentence to be
only-known, which is perhaps best seen when considering a
fluent formula before any action has occurred. For example,
e |= OKnow(At(box1, room2)) iff

e = {w | w |= At(box1, room2)}.

In other words, as far as objective sentences are concerned,
e knows only the logical consequences of At(box1, room2)
and nothing else.

Basic Action Theories
As shown in (Lakemeyer & Levesque 2004), we are able to
define basic action theories in a way very similar to those
originally introduced by Reiter:

Definition 1 (Basic Action Theory) Given a set of fluent
predicates F , a set of sentences Σ is called a basic action
theory over F iff it only mentions the fluents in F and is of
the form Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σsense, where
• Σ0 is a finite set of fluent sentences,
• Σpre is a singleton of the form4

¤ Poss(a) ≡ π, where π
is fluent with a being the only free variable;

• Σpost is a finite set of successor state axioms of the form5

¤ [a]F (~x) ≡ γF , one for each fluent F ∈ F \{Poss, SF},
where γF is a fluent sentence whose free variables are
among ~x and a;

• Σsense is a singleton of the form ¤ SF(a) ≡ ϕ, where ϕ is
fluent with a being the only free variable.
4We follow the convention that free variables are universally

quantified from the outside. We also assume that ¤ has lower syn-
tactic precedence than the logical connectives, so that¤ Poss(a) ≡
π stands for ∀a.¤(Poss(a) ≡ π).

5The [t] construct has higher precedence than the logical con-
nectives. So ¤ [a]F (~x) ≡ γF abbreviates ∀a.¤([a]F (~x) ≡ γF ).



The idea is that Σ0 represents the initial database, Σpre is
one large precondition axiom, Σpost the set of successor state
axioms for all fluents in F (incorporating Reiter’s solution
(1991) to the frame problem) and Σsense defines the sensing
results for actions. In our example, we imagine having at
least one box and two rooms, and the box is in one of the
rooms. The initial database then is:

Box(box1) ∧ Room(room1) ∧ Room(room2),
At(box1, room1) ∨ At(box1, room2)

(1)

Further we need the following axioms expressing state con-
straints for the initial situation. By the successor state ax-
ioms, they will hold in all Possible future situations.

At(x, y) ⊃ Box(x) ∧ Room(y)∧
¬(∃z. At(x, z) ∧ y 6= z),

Box(x) ⊃ ∃y. At(x, y)
(2)

It is possible to push a box x from y to z iff x is in y and z is
a room; the looking action is always possible. The precon-
dition axiom therefore is:

¤ Poss(a) ≡ ∃x, y, z. a = push(x, y, z) ∧
At(x, y) ∧ Room(z) ∨

∃x, y. a = lookFor(x, y)

The fluents Box and Room are situation-independent, i.e.
their truth value does not change by doing actions. After
some action a, x is located at y iff it was pushed there or if
it was already located at y and not pushed somewhere else.
We thus get the following successor state axioms:
¤ [a]Box(x) ≡ Box(x),
¤ [a]Room(x) ≡ Room(x),
¤ [a]At(x, y) ≡ ∃z. a = push(x, z, y) ∨ At(x, y)∧

¬(∃z. a = push(x, y, z) ∧ y 6= z)

We assume that pushing always returns TRUE as a default
sensing result. Looking, on the other hand, returns the truth
value of the fluent At:
¤ SF(a) ≡ ∃x, y, z. a = push(x, y, z) ∨

∃x, y. a = lookFor(x, y) ∧ At(x, y)
(3)

Regression
For basic action theories, (Lakemeyer & Levesque 2004) in-
troduce an ES equivalent of Reiter’s regression operator. The
idea behind regression is that whenever we encounter a sub-
formula of the form [a]F (~x) (i.e. F (~x) is true after a), we
may substitute it by γF , the right-hand side of the successor
state axiom of F . This is sound in the sense that the ax-
iom defines the two expressions to be equivalent. The result
of the substitution will be true in exactly the same worlds
satisfying the action theory Σ as the original one, but con-
tains one less modal operator [a]. Iteratively applying such
substitution steps, we will end up with a static formula that
describes exactly the conditions on the initial situation under
which the original, non-static formula holds.

Formally, for any bounded, objective sentence α, let
R[α], the regression of α wrt Σ, be the fluent formula
R[〈 〉, α], where for any sequence of terms σ (not necessarily
ground), R[σ, α] is defined inductively on α by:

1. R[σ, (t1 = t2)] = (t1 = t2);
2. R[σ,¬α] = ¬R[σ, α];
3. R[σ, (α ∧ β)] = (R[σ, α] ∧R[σ, β]);
4. R[σ,∀xα] = ∀xR[σ, α];
5. R[σ, [t]α] = R[σ · t, α];
6. R[σ, Poss(t)] = R[σ, πa

t ];
7. R[σ, SF(t)] = R[σ, ϕa

t ];
8. R[σ, F (t1, . . . , tk)] is defined inductively on σ by:
(a) R[〈 〉, F (t1, . . . , tk)] = F (t1, . . . , tk));
(b) R[σ · t, F (t1, . . . , tk)] = R[σ, (γF )a

t
y1

t1
. . .

yk

tk
].

For illustration, consider the sentence

[push(box1, room1, room2)]At(box1, room2),

which says that after pushing box1 from room1 to
room2, the box is located in room2. We abbreviate
push(box1, room1, room2) by p. Then, given our exam-
ple action theory and using Rule 5,

R[〈 〉, [p]At(box1, room2)]

can be replaced by

R[〈p〉, At(box1, room2)].

Applying Rule 8b with the successor state axiom for At and
substituting a by p, x by box1, and y by room2 yields

R[〈 〉, ∃z.p = push(box1, z, room2) ∨ At(box1, room2)
∧¬(∃z.p = push(box1, room2, z) ∧ room2 6= z) ].

Using Rules 1–4, 8a, and the definitions for ∨ and ∃ this
reduces simply to

∃z.p = push(box1, z, room2) ∨ At(box1, room2)
∧¬(∃z.p = push(box1, room2, z) ∧ room2 6= z).

(4)

Note that, since all ground terms are rigid designators, two
terms f(b) and f(c) are equal just in case b = c. Hence, with
p being shorthand for push(box1, room1, room2), p =
push(box1, z, room2) holds iff

(box1 = box1) ∧ (room1 = z) ∧ (room2 = room2)

holds and p = push(box1, room2, z) iff

(box1 = box1) ∧ (room1 = room2) ∧ (room2 = z).

Therefore (4) can be replaced by the equivalent sentence

∃z.(box1 = box1)∧(room1 = z)∧(room2 = room2)
∨At(box1, room2) ∧
¬(∃z. (box1 = box1) ∧ (room1 = room2)∧

(room2 = z) ∧ (room2 6= z) ),
(5)

which simplifies to TRUE ∨ At(box1, room2) ∧ TRUE and
hence to TRUE. This tells us that, according to our ac-
tion theory Σ, there are no special conditions under which
At(box1, room2) is true after p. It is simply the case (and
corresponds to our intuition) that it is always true that af-
ter pushing box1 to room2, box1 is in room2, no matter
what the world was like before. Whether it is possible to
perform action p is a whole different question. The reader



may verify that R[Poss(p)] is, with simplifications, equiv-
alent to At(box1, room1); p therefore is only executable in
an initial world state where box1 actually is in room1, which
again agrees with our intuition about the executability of that
action.

In general, it is possible to transform an objective,
bounded formula into a fluent one that is equivalent wrt to
Σ. More precisely, Lakemeyer and Levesque obtain the fol-
lowing:
Theorem 2 Let Σ be a basic action theory and let α be an
objective, bounded sentence. Then R[α] is a fluent sentence
and satisfies

Σ |= α iff Σ0 |= R[α].

As an immediate consequence of the theorem we obtain
Corollary 3 Let w |= Σ and φ be bounded and objective.
Then R[φ] is a fluent sentence and w |= R[φ] iff w |= φ.

Lakemeyer and Levesque also show how regression can
be extended to cope with knowledge, based on the following
theorem.
Theorem 4

|= ¤[a]Know(φ) ≡
SF(a) ∧ Know(SF(a) ⊃ [a]φ)∨
¬SF(a) ∧ Know(¬SF(a) ⊃ [a]φ)

The theorem, which can be seen as a kind of successor
state axiom for knowledge, leads to two additional regres-
sion rules for knowledge:

9. R[σ · t, Know(α)] = R[σ, βa
t ],

where β is the right-hand side of the equivalence in
Theorem 4.

10. R[〈 〉, Know(α)] = Know(R[〈 〉, α]).
In (Lakemeyer & Levesque 2004) the rules were actually
slightly more complicated as they used two different basic
action theories, one which refers to what is true in the actual
world and another which is believed by the agent. In this
paper, we are only concerned with what the agent believes
and never need to refer to a basic action theory other than the
one held by the agent, hence the simplification. The follow-
ing theorem is an easy consequence of Theorem 5 of (Lake-
meyer & Levesque 2004).
Theorem 5 Let Σ be a basic action theory and α be a
bounded, basic sentence. Then
|= OKnow(Σ) ⊃ Know(α) iff
|= OKnow(Σ0) ⊃ Know(R[〈 〉, α]).

Reducing knowledge to first-order reasoning
When we apply the extended regression operator to a ba-
sic, bounded formula, the result is basic and static, i.e. we
get a formula that only talks about the initial situation, but
may still contain Know operators. We may however elimi-
nate those as well using another result from (Lakemeyer &
Levesque 2004). The idea is, given the description Σ0 of the
initial situation, to replace a subformula Know(β) by an ob-
jective formula φ which describes the known instances of β.
The result is an adaptation of the Representation Theorem
of OL (Levesque & Lakemeyer 2001) and makes use of the
fact that each valid OL sentence, as defined below, is also
valid in ES.

Definition 6 An OL formula is static, does not mention Poss
or SF, and the only rigid terms appearing are standard
names (i.e. terms from G0) and variables.
The basic building block of the construction now is given in
the following definition.
Definition 7 Let φ be an objective OL formula and Σ0 be
a finite set of objective OL sentences. Then RES[[φ,Σ0]] is
defined by:

1. If φ has no free variables, then RES[[φ,Σ0]] is
TRUE, if Σ0 |= φ, and FALSE, otherwise.

2. If x is a free variable in φ:
Let n1, . . . , nk be all of the standard names in φ and
in Σ0, and n′ some name that does not appear in φ
or in Σ0. Then RES[[φ,Σ0]] is

((x = n1) ∧ RES[[φx
n1

,Σ0]]) ∨ · · ·
((x = nk) ∧ RES[[φx

nk
,Σ0]]) ∨

((x 6= n1) ∧ . . . ∧ (x 6= nk) ∧RES[[φx
n′ ,Σ0]]

n′

x )

The intuition here is that to determine for which individuals
φ is known to hold (according to Σ0), we only have to check
the (finitely many) names ni in φ and Σ0 and one further
name n′, which then serves as a representative for all indi-
viduals that are not mentioned. The method is correct since
if we can prove that φx

n′ is (not) known to hold, we can sim-
ply substitute n′ by any non-appearing ground term r and
use the same proof for showing that φx

r is also (not) known.
This already suffices because our semantics assumes that the
set of ground terms also represents the universe of discourse.
Notice that after the recursive evaluation of RES with x re-
placed by n′, all appearances of n′ are substituted back by
x. The new names are therefore only used temporarily for
the purpose of the construction and do not appear in the final
result.

In the example initial database of our robot, the only
standard names are box1, room1 and room2. One arbitrary
name that does not appear is box17. RES[[Box(x),Σ0]]
then for instance is

((x = box1) ∧ RES[[Box(box1),Σ0]])∨
((x = room1) ∧ RES[[Box(room1),Σ0]])∨
((x = room2) ∧ RES[[Box(room2),Σ0]])∨
((x 6= box1) ∧ (x 6= room1) ∧ (x 6= room2)
∧RES[[Box(box17),Σ0]]

box17
x )

Since neither of Box(room1), Box(room2) and
Box(box17) is entailed by Σ0, all of the correspond-
ing RES subformulas are equal to FALSE. Only
RES[[Box(box1),Σ0]] evaluates to TRUE, which is
why the whole formula can be simplified to (x = box1).

For the complete definition, we fill further need the notion
of quasi-OL formulas.
Definition 8 A quasi-OL formula is static, does not mention
Poss and SF, and function symbols of arity greater than zero
only appear in equations of the form

f(v1, . . . , vm) = g(w1, . . . , wn),

where each vi and wj is either a standard name or a vari-
able.



The only extension to the definition of OL formulas is that
a quasi-OL formula may also mention function symbols of
higher arity, but only inside equality statements of the above
restricted form.

The reduction of sentences containing Know to purely ob-
jective ones now is achieved using the following definition.
Definition 9 Given a finite set of objective OL sentences Σ0

and a basic quasi-OL formula α, ‖α‖Σ0
is defined by

‖α‖Σ0
= α, when α is an objective OL formula,

‖f(~v) = g(~w)‖Σ0
= FALSE, if f and g are distinct,6

‖f(~v) = f(~w)‖Σ0
= (~v = ~w),7

‖¬α‖Σ0
= ¬‖α‖Σ0

,
‖(α ∧ β)‖Σ0

= (‖α‖Σ0
∧ ‖β‖Σ0

),
‖∀vα‖Σ0

= ∀v‖α‖Σ0
,

‖Know(α)‖Σ0
= RES[[‖α‖Σ0

,Σ0]]

That is, we substitute subformulas Know(α) by objective
formulas describing the individuals for which α is known to
be true. In the example, ‖∀x.Box(x) ⊃ Know(Box(x))‖Σ0

is simply ∀x.Box(x) ⊃ (x = box1), when we use the sim-
plified version of RES[[Box(x),Σ0]] above. Intuitively, this
is correct as box1 is the only box known to the robot.

Definition 9 is an extension of the original ‖ · ‖Σ0
which

could only handle OL formulas. We newly introduced the
second and third item here to enable it to treat quasi-OL for-
mulas as well, which will be needed in the section “Repre-
sentation Theorems” when we apply the operator to regres-
sion results that may still contain equations between action
terms. As long as those equations are of the restricted form
given in Definition 8, they can be eliminated using the two
new items, thus turning a quasi-OL formula into an equiv-
alent OL expression. Notice that in the regression example
above, we already applied these reduction steps when we
simplified (4) to (5). It is easy to see that we have:
Corollary 10 ‖α‖Σ0

is an objective OL sentence.
The case for Know(α) therefore is well defined: the argu-
ment handed over to RES does not contain function symbols
of arity greater than zero. Further, the soundness of the sim-
plification method follows directly from the unique names
assumption that is integrated in the semantics of ES:
Corollary 11 If α is an objective quasi-OL sentence, then
w |= α iff w |= ‖α‖Σ0

.
The following theorem is an easy consequence of a the-

orem in (Lakemeyer & Levesque 2004) and establishes, to-
gether with the previous result, that reasoning about knowl-
edge ultimately reduces to computing first-order entail-
ments.
Theorem 12 Let Σ0 be a set of objective OL sentences and
α a basic quasi-OL sentence.
Then |= OKnow(Σ0) ⊃ Know(α) iff |= Σ0 ⊃ ‖α‖Σ0

.

6f(~v) means f(v1, . . . , vk), if f is a k-ary function symbol. f
and g do not have to be of the same arity.

7Let ~v stand for v1, . . . , vk and ~w stand for w1, . . . , wk. Then
(~v = ~w) is shorthand for (v1 = w1) ∧ . . . ∧ (vk = wk).

Interaction Operations
With these preliminaries, we are now ready to specify what it
means for an agent to query its knowledge base and update
it given sensing results or user input. In particular, we are
interested in operations to do the following:

1. initialize the knowledge base, providing (generally in-
complete) initial world knowledge and general knowledge
about actions and sensing;

2. update with sensing results after an action was executed
physically;

3. pose queries (i.e. evaluating test conditions) about the cur-
rent or future situations;

4. and provide the system with new information about the
current situation (i.e. user input).

This motivates the definition of the operations below, assum-
ing that the system’s internal state (e, σ) consists of an epis-
temic state e that represents the worlds the agent considers
possible (the system’s knowledge) and a history σ of the ac-
tions performed so far:

Definition 13 (Interaction Operations) Let Σ be a set of
objective sentences, e an epistemic state, σ a sequence of
ground terms, α a sentence, t a ground term and i ∈ {0, 1}.
We define

1. INIT[Σ] = (e, 〈 〉)
where e = {w | w |= Σ}

2. EXE[(e, σ), t, i] = (e′, σ · t)
where e′ = {w ∈ e | w[σ:SF(t)] = i}

3. ASK[(e, σ), α] = “yes” iff e, w, σ |= α for all w ∈ e
(and “no” otherwise)

4. TELL[(e, σ), α] = (e′, σ)
where e′ = {w ∈ e | e, w, σ |= α}

By providing some initial objective knowledge Σ (e.g. a ba-
sic action theory), we obtain an initial state of the system
where only Σ is known and no actions have been performed
so far. For updating the system’s state after an action, we
have to provide the action t that was executed and the binary
sensing result i; the system then incorporates the knowledge
gained from sensing and updates its action history. If a query
in form of a sentence α is posed, the system evaluates it wrt
the current e and σ. A user input α finally forces the agent
to believe α.

Note that we did not use Know(α) when defining the yes-
answer for ASK. This is because the semantics of Know
requires access to the real world (via 'σ), which the agent
does not have. However, as long as the epistemic state e is
changed only as a result of EXE or TELL, then all worlds
in e will agree with any “real” world compatible with the
sensing results or user inputs8.

Let us see how the interaction with the KB would look
like when we want to execute our example program from

8cp. also Theorem 19.



the introduction:
if ¬∃y.Know(At(box1, y)) ∧
Know([lookFor(box1, room1)]∃y.Know(At(box1, y)))

then lookFor(box1, room1);
if Know(Poss(push(box1, room1, room2)))

then push(box1, room1, room2);

In the following, let l denote lookFor(box1, room1) and p
stand for push(box1, room1, room2).

1. We begin with initializing the system with the exam-
ple action theory from above. Therefore let (e1, 〈 〉) :=
INIT[Σ].

2. The first condition amounts to determining
ASK[(e1, 〈 〉), ¬∃y.Know(At(box1, y))∧

[l]∃y.Know(At(box1, y))) ].

We have that for all w ∈ e1,
e1, w, 〈 〉 |= ¬∃y.Know(At(box1, y))

since there is no single ground term r such that
e1, w, 〈 〉 |= Know(At(box1, r)). The reason for this
is that because of (1) there are worlds in e1 where
only At(box1, room1) holds and some, where only
At(box1, room2) is true. The reader may verify that for
all worlds w ∈ e1 it also holds that

e1, w, 〈 〉 |= [l]∃y. Know(At(box1, y)).

Therefore the answer is “yes”.
3. Because of the answer in the last item, the system now

performs the action l. Let us assume that the action’s re-
turn value is “TRUE”, i.e.

(e2, 〈l〉) := EXE[(e1, 〈 〉), l, 1].

e2 consists of all worlds w such that w |= Σ and w |=
SF(l). The latter is equivalent to w |= At(box1, room1)
according to (3). Since Σ contains the sentences (2), it
follows that w |= ¬At(box1, t) for all terms t other than
room1.

4. Next, we turn to ASK[(e2, 〈l〉), Poss(p)].
According to Σpre, Poss(p) is equivalent to
At(box1, room1) ∧ Room(room2). In the last
item we saw that all w ∈ e2 satisfy At(box1, room1).
Since the action theory is defined in a way such that
lookFor does not change the truth value of At, we have
w, 〈l〉 |= At(box1, room1). Also w |= Room(room2),
since this was part of Σ0. Because the truth value of
Room cannot be changed by any action, we additionally
have w, 〈l〉 |= Room(room2). Hence w, 〈l〉 |= Poss(p)
for all w ∈ e2 and the answer is again “yes”.

5. The system now has to perform p. Assuming that
this non-sensing action yields a default sensing result of
“TRUE”, we have

(e3, 〈l, p〉) := EXE[(e2, 〈l〉), p, 1].

Because of Σsense |= [l]SF(p), the system knew the out-
come of the action already in advance and therefore did
not gain any new knowledge (except for the fact that p was
executed). Therefore it holds that e3 = e2 = {w | w |=
Σ ∧ At(box1, room1)}.

6. After the program has terminated, imagine that a user
wants to tell the agent that it knows all the boxes. This
presents new information to the system since it currently
only knows one box (box1), but is unsure whether there
are more. Telling the system that it knows all the boxes
thus amounts to telling it that there are no boxes other than
box1.
(e4, 〈l, p〉) := TELL[(e3, 〈l, p〉),

∀x.Box(x) ⊃ Know(Box(x)), ]

yielding

e4 = {w ∈ e3 | w |= ∀x.Box(x) ⊃ (x = box1)}.

Representation Theorems
As explained earlier, our objective is to represent the sys-
tem’s state by a collection of standard first-order logic for-
mulas and reduce the computation of the interaction opera-
tions to first-order reasoning, which then allows to execute
knowledge-based programs using a standard first-order the-
orem prover. As a first step, we will see how our meta-
theoretic definition of states and interaction operations trans-
lates to a characterization by valid ES sentences.

For a set of objective sentences Σ, let <[[Σ]] be the set
{w | w |= Σ}. Observe that this epistemic state is, accord-
ing to the semantics, the unique e such that e |= OKnow(Σ).
We obtain the following theorem:
Theorem 14 Let Σ be a basic action theory, σ a sequence of
ground terms, α a sentence, φ a fluent sentence, t a ground
term and i ∈ {0, 1}. Then

1. INIT[Σ] = (<[[Σ]], 〈 〉)

2. EXE[(<[[Σ]], σ), t, i] = (<[[Σ ∧ φ]], σ · t) iff
|= OKnow(Σ) ⊃ Know([σ](¬)SF(t) ≡ φ)

3. ASK[(<[[Σ]], σ), α] = “yes” iff
|= OKnow(Σ) ⊃ [σ]Know(α)

4. TELL[(<[[Σ]], σ), α] = (<[[Σ ∧ φ]], σ) iff
|= OKnow(Σ) ⊃ Know([σ]α ≡ φ)

Proof:
1. follows immediately from Definition 13.
2. EXE[(<[[Σ]], σ), t, i] = (<[[Σ ∧ φ]], σ · t)

iff (by definition)
{w ∈ <[[Σ]] |w[σ:SF(t)] = i} = {w |w |= Σ ∧ φ}

iff (equivalent rewriting)
{w ∈ <[[Σ]] |w[σ:SF(t)] = i} = {w ∈ <[[Σ]] |w |= φ}

iff (equivalent rewriting)
for all w ∈ <[[Σ]]: w[σ:SF(t)] = i iff w |= φ

iff (equivalent rewriting)
for all w ∈ <[[Σ]]: w |= [σ](¬)SF(t) iff w |= φ
|= OKnow(Σ) ⊃ Know([σ](¬)SF(t) ≡ φ).

3. “⇒”:
ASK[(<[[Σ]], σ), α] = “yes”
⇒ (by definition)

for all w ∈ <[[Σ]]: <[[Σ]], w, σ |= α
⇒ (for any world w′)

for all w ∈ <[[Σ]] with w 'σ w′: <[[Σ]], w, σ |= α
⇒ (by the semantics)

if <[[Σ]], w′ |= OKnow(Σ), then <[[Σ]], w′ |= [σ]Know(α)



⇒ (equivalent rewriting)
|= OKnow(Σ) ⊃ [σ]Know(α).
“⇐”:
ASK[(<[[Σ]], σ), α] = “no”
⇒ (by definition)

there is some w ∈ <[[Σ]] such that <[[Σ]], w, σ 6|= α
⇒ (by the semantics and since w ∈ <[[Σ]] and w 'σ w)

<[[Σ]], w |= OKnow(Σ), but <[[Σ]], w 6|= [σ]Know(α)
⇒ (equivalent rewriting)

6|= OKnow(Σ) ⊃ [σ]Know(α).
4. TELL[(<[[Σ]], σ), α] = (<[[Σ ∧ φ]], σ)

iff (by definition)
{w ∈ <[[Σ]] | <[[Σ]], w, σ |= α} = {w |w |= Σ ∧ φ}

iff (equivalent rewriting)
{w ∈ <[[Σ]] | <[[Σ]], w, σ |= α} = {w ∈ <[[Σ]] |w |= φ}

iff (equivalent rewriting)
for all w ∈ <[[Σ]]: <[[Σ]], w |= [σ]α iff w |= φ

iff (by the semantics)
|= OKnow(Σ) ⊃ Know([σ]α ≡ φ).

The theorem tells us that the initial state of the system can
simply be represented by the initial action theory itself to-
gether with an empty action history. After an action t was
executed and a sensing result provided, it suffices to aug-
ment the current representation Σ by a fluent sentence that is
known to be equivalent to [σ]SF (t) (respectively [σ]¬SF(t)
if i = 0) and add t to the action history. A basic, bounded
query α can be answered by testing whether only-knowing
the action theory entails currently knowing α. If the system
is told some sentence α about the current situation σ, the
knowledge base is to be augmented by a fluent sentence that
is known to be equivalent to [σ]α.

Notice that for a fluent sentence φ and a basic action the-
ory Σ, the theory Σ∧φ is also always a basic action theory in
the sense of Definition 1 (simply view φ as being part of the
new Σ0). Therefore, if we start in a state given by INIT[Σ],
successively applying TELL and EXE always leads to a
state that is itself representable by some action theory Σ∗,
and we may pose queries using ASK.

Achieving the final reduction of states and operations to
first-order reasoning now is straight forward considering the
techniques introduced earlier: We may eliminate actions us-
ing regression and can treat knowledge by means of ‖ · ‖Σ0

and thus acquire the φ in question in Theorem 14. Using
this idea, we obtain our main result in form of representa-
tion theorems for the semantic definition of our interaction
operations:
Theorem 15 Let Σ be a basic action theory over F , e an
epistemic state, α a basic, bounded sentence over F , σ ∈
R∗, t a ground term and i ∈ {0, 1}. Further let Σ0 be a set
of OL sentences and R[σ, (¬)SF(t)] and R[σ, α] be quasi-
OL sentences. Then

1. INIT[Σ] = (e′, 〈 〉) iff e′ = <[[Σ]]

2. EXE[(<[[Σ]], σ), t, i] = (e′, σ · t) iff
e′ = <[[Σ ∧ ‖R[σ, (¬)SF(t)]‖Σ0

]]

3. ASK[(<[[Σ]], σ), α] = “yes” iff
|= Σ0 ⊃ ‖R[σ, α]‖Σ0

4. TELL[(<[[Σ]], σ), α] = (e′, σ) iff
e′ = <[[Σ ∧ ‖R[σ, α]‖Σ0

]]

Proof:
1. follows immediately from Definition 13.
2. EXE[(<[[Σ]], σ), t, i] =

(<[[Σ ∧ ‖R[σ, (¬)SF(t)]‖Σ0
]], σ · t)

iff (by Theorem 14)
|= OKnow(Σ)

⊃ Know([σ](¬)SF(t) ≡ ‖R[σ, (¬)SF(t)]‖Σ0
)

iff (by Theorem 5)
|= OKnow(Σ0)

⊃ Know(R[〈 〉, [σ](¬)SF(t) ≡ ‖R[σ, (¬)SF(t)]‖Σ0
])

iff (by Theorem 12)
|= Σ0 ⊃ ‖R[〈 〉, [σ](¬)SF(t) ≡ ‖R[σ, (¬)SF(t)]‖Σ0

]‖Σ0

iff (equivalent rewriting)
|= Σ0 ⊃ ‖R[σ, (¬)SF(t)] ≡ R[σ, (¬)SF(t)]‖Σ0

iff (equivalent rewriting)
|= Σ0 ⊃ TRUE,
which is a tautology, therefore the proposition holds.

3. ASK[(<[[Σ]], σ), α] = “yes”
iff (by definition)

for all w ∈ <[[Σ]]: <[[Σ]], w |= [σ]α
iff (by the semantics)

|= OKnow(Σ) ⊃ Know([σ]α)
iff (by Theorem 5)

|= OKnow(Σ0) ⊃ Know(R[σ, α])
iff (by Theorem 12)

|= Σ0 ⊃ ‖R[σ, α]‖Σ0

4. TELL[(<[[Σ]], σ), α] = (<[[Σ ∧ ‖R[σ, α]‖Σ0
]], σ)

iff (by Theorem 14)
|= OKnow(Σ) ⊃ Know([σ]α ≡ ‖R[σ, α]‖Σ0

)
iff (by Theorem 5)

|= OKnow(Σ0) ⊃ Know(R[〈 〉, [σ]α ≡ ‖R[σ, α]‖Σ0
])

iff (by Theorem 12)
|= Σ0 ⊃ ‖R[〈 〉, [σ]α ≡ ‖R[σ, α]‖Σ0

]‖Σ0

iff (equivalent rewriting)
|= Σ0 ⊃ (‖R[σ, α]‖Σ0

≡ ‖R[σ, α]‖Σ0
)

iff (equivalent rewriting)
|= Σ0 ⊃ TRUE,
which is a tautology, therefore the proposition holds.

In items 2 and 4 we are able to eliminate the nesting of R
because of the fact that applying regression to an already re-
gressed sentence (which is basic and static) does not change
that sentence anymore. We further use a similar property of
‖ · ‖Σ0

, whose result is always already an objective OL sen-
tence.

For EXE, the φ from Theorem 14 with which Σ is to be
augmented is therefore the regression of SF(t) (if i = 1)
respectively ¬SF (t) (if i = 0) through the current action
history σ, simplified by ‖·‖Σ0

. Similarly, the argument for a
TELL operation has first to be regressed through σ and then
be transformed into a fluent sentence using ‖ · ‖Σ0

, before
it can be added to the current knowledge base. ASK can
be implemented the same way, with the difference that the
result of the transformation is not used to augment Σ, but
has to be tested against Σ0. Since only fluent sentences are



involved in this case, the test amounts to computing standard
first-order entailments.

Here, we regress both inside and outside of Know wrt the
agent’s belief Σ, as defined in the section about regression.
Theorem 14 illustrates why we do not need a different, “real
world” Σ′ like in (Lakemeyer & Levesque 2004): for ASK,
we want to check whether α is known. Equally, EXE and
TELL asserts (¬)SF(t) and α to be known afterwards. In
each case we are therefore already inside an implicit Know
operator, i.e. we are only concerned with what the agent be-
lieves and do not make any assumptions about what the out-
side world is like. All we “see” of it are the sensing results
i; it is unnecessary to require that they conform to some out-
side action theory Σ′.

The conditions of the theorem that require Σ0 to be a
set of OL sentences and R[σ, (¬)SF(t)] and R[σ, α] to be
quasi-OL sentences are necessary in order to use Theorem
12. They do not apply for general Σ and α, but for a large
class of “reasonable” theories used for practical implemen-
tations. Below we will state some simple, yet sufficient con-
ditions on action theories and queries that assure that the as-
sumptions of Theorem 15 are satisfied. The intuition behind
them is that usually, objects of the application domain are
denoted by standard names (like box1 and room2), whereas
function symbols that take one or more arguments are only
used as actions (e.g. push(x, y, z) and lookFor(x, y)). Al-
though our semantics does not distinguish between sorts ac-
tion and object, we are free to make this distinction when
defining our action theory. Further, since Σ0 is supposed to
talk about the initial situation, it does not make much sense
that it mentions any actions. Finally, there are usually no flu-
ents other than Poss and SF that take an action as argument
(At(x, y), Box(x) and Room(x) do not).

To formalize these intuitions, we will need the notion of a
flat term. A flat term is of the form f(v1, . . . , vk) for some
k-ary function symbol f , where each vi is either a standard
name or a variable; the k here may also be zero. If x is
a variable and n a standard name, then for instance n and
f(x, n) are flat terms while x and f(f(x, n), x) are not. Al-
lowing equations between such flat terms are what extends
OL formulas to quasi-OL formulas (cp. Definition 8). In the
following, “function symbols” will refer to f that have one
or more arguments (i.e. symbols from Gk for k > 0). We
require that

1. Σ0 does not contain function symbols;
2. Σpre, Σpost and Σsense mention function symbols only

in expressions of the form (a = f(~v)), where a is
the free action variable in π, each γF and ϕ (i.e. the
right-hand side of the respective axioms) and f(~v) is
flat;

3. the action variable a in π, all γF and ϕ also appears
only in equations (a = f(~v)), where f(~v) is flat;

4. σ and t are flat;
5. α mentions function symbols only in equations of

the form f(~v) = g(~w) (both flat) and as arguments
of Poss, SF and [r];

6. in α, the arguments of Poss, SF and [r] are flat terms
(and therefore not variables).

We then have:
Lemma 16 Let Σ, σ, t and α satisfy conditions 1–6 above.
Then

1. Σ0 is a set of OL sentences.
2. R[σ, (¬)SF(t)] is a quasi-OLsentence.
3. R[σ, α] is a quasi-OL sentence.

Proof: The first item should be clear. Since (¬)SF(t) is
a sentence that satisfies the conditions on α, item 2 is cov-
ered by the last item, whose proof is a simple, but tedious
induction on the structure of α.

We want to emphasize again that the conditions 1–6 do not
really restrict the possible application domains of our ap-
proach, if we agree to the assumptions that there are no ob-
ject functions and that no fluents except Poss and SF have
action arguments. If the successor state axioms are con-
structed following Reiter’s solution to the frame problem,
then they even already have the form satisfying conditions 2
and 3. Likewise, the form of Σpre and Σsense as a case distinc-
tion (i.e. a disjunction over finitely many actions, cp. the ex-
ample theory) corresponds to the situation calculus theories
from (Scherl & Levesque 2003) that have one precondition
axiom and one sense effect axiom for each action. Further,
the restricted form of possible α still constitutes a gain in
expressiveness compared to (Reiter 2001a), who does not
allow references to future situations or quantifying-in. Like
us, Reiter rules out functional fluents like lastBoxMoved;
this does however not limit our expressive capabilities since
we can use a relational fluent lastBoxMoved(x) and ensure
that it is always only true for a single value for x.

Now notice that our example action theory and the test
conditions in the program fulfill all of the requirements. We
may therefore apply Theorem 15, which looks as follows:

1. Clearly, e1 = <[[Σ]].
2. To check that

ASK[(e1, 〈 〉),¬∃y.Know(At(box1, y))∧
[l]∃y. Know(At(box1, y)) ] = “yes”,

let α1 stand for ¬∃y.Know(At(box1, y)) and α2 be
[l]∃y.Know(At(box1, y)). We therefore have to de-
termine ‖R[〈 〉, α1 ∧ α2]‖Σ0

, which is the same as
‖R[〈 〉, α1]‖Σ0

∧ ‖R[〈 〉, α2]‖Σ0
.

R[〈 〉, α1] is simply α1, because regressing through the
empty action sequence has no effect here. Applying ‖·‖Σ0

means substituting Know(At(box1, y)) by FALSE, since
there is no single y such that At(box1, y) is known: box1
may equally be in room1 or in room2. ‖R[〈 〉, α1]‖Σ0

therefore reduces to TRUE, which is clearly entailed by
Σ0.
R[〈 〉, α2] is ∃y.R[〈l〉,Know(At(box1, y))], which, ap-
plying regression rule 9, equals

R[〈 〉,∃y. SF(l) ∧ Know(SF(l) ⊃ [l]At(box1, y))∨
¬SF(l) ∧ Know(SF(l) ⊃ [l]At(box1, y)) ]

Both inside and outside of Know, regression replaces
SF(lookFor(box1, room1)) by At(box1, room1). The



regression of At(box1, y) through l further is simply (a
formula that is equivalent to) At(box1, y) again, because
the sensing action lookFor is defined in Σ to not change
any fluents. We obtain

R[〈 〉,∃y. At(box1, room1)∧
Know(At(box1, room1) ⊃ At(box1, y))∨

¬At(box1, room1)∧
Know(¬At(box1, room1) ⊃ At(box1, y))]

Now for At(box1, room1) ⊃ At(box1, y), the known in-
stances are given by (y = room1): If box1 is in room1,
it cannot be in any other room because of (2). If it is how-
ever not in room1, it has to be in room2 according to (1);
therefore the known instances of ¬At(box1, room1) ⊃
At(box1, y) are simply (y = room2). Putting this to-
gether, we get that ‖R[〈 〉, α2]‖Σ0

is (with simplifications)

∃y. (At(box1, room1) ∧ (y = room1)∨
¬At(box1, room1) ∧ (y = room2) ),

which is also entailed by Σ0.
3. We have e2 = <[[Σ ∧ ‖R[〈 〉, SF(l)]‖Σ0

]]
= <[[Σ ∧ At(box1, room1)]].

To see why, observe that R[〈 〉, SF(l)] is

∃x, y, z. lookFor(box1, room1) = push(x, y, z) ∨
∃x, y. lookFor(box1, room1) = lookFor(x, y)

∧At(x, y)

Applying ‖ · ‖Σ0
yields

∃x, y, z. FALSE ∨
∃x, y. (box1 = x) ∧ (room1 = y) ∧ At(x, y)

which can be further simplified to At(box1, room1).
4. ASK[(e2, 〈l〉), Poss(p)] =“yes”:

R[〈l〉, Poss(p)] simplifies to R[〈l〉, At(box1, room1) ∧
Room(room2)], which reduces to At(box1, room1) ∧
Room(room2). Since this is an objective sentence with-
out function symbols, applying ‖ · ‖Σ∗

0
has no effect.

Then |= Σ∗

0
⊃ At(box1, room1)∧Room(room2), where

Σ∗

0
= Σ0 ∧ At(box1, room1).

5. e3 = <[[Σ∗ ∧ ‖R[〈l〉, SF(p)]‖Σ0
]] = e2,

since ‖R[〈l〉, SF(p)]‖Σ0
simplifies to TRUE.

6. Finally, e4 = <[[Σ∗ ∧ ∀x.Box(x) ⊃ (x = box1)]], be-
cause regression has no effect on Box and box1 is the
only box known to the robot.
While executing a knowledge-based program like the

above, queries have to be answered wrt to the current state
of the system, which is the result of an initialization and the
execution of a finite number of actions. For this situation,
we will therefore recapitulate by stating a final theorem that
shows the correspondence between the three different views
that were taken in this paper on knowledge-based programs:

1. in terms of the meta-theoretic interaction operations
(Definition 13)

2. expressed as a valid sentence about only-knowing
(Theorem 14)

3. reduced to first-order provability
(Theorem 15)

We first need a bit of notation for the formula representing
the sensing results of an action history:
Definition 17 Let σ be a sequence of ground action terms
and ι a sequence of binary values of the same length. We
define Ψ(σ, ι) inductively as follows:
• Ψ(〈 〉, 〈 〉) = TRUE

• Ψ(σ · t, ι · i) =

{

Ψ(σ, ι) ∧ [σ]SF(t), i = 1
Ψ(σ, ι) ∧ [σ]¬SF(t), i = 0

A simple consequence of this definition:
Corollary 18 w 'σ w′ for some w′ with w′ |= Ψ(σ, ι) iff
w |= Ψ(σ, ι).
Proof: Simple induction on σ.

Further we extend the definition of EXE to action sequences
as its successive application on the single actions. We then
have:
Theorem 19 Let Σ be a basic action theory, σ a sequence
of ground terms, ι a sequence of binary values of the same
length and α a basic, bounded sentence over F . Further
let Σ0 be a set of OL sentences and R[〈 〉,Ψ(σ, ι)] and
R[〈 〉, [σ]α] be quasi-OL sentences. Then the following are
equivalent:

1. ASK[EXE[INIT[Σ], σ, ι], α] = “yes”
2. |= OKnow(Σ) ∧ Ψ(σ, ι) ⊃ [σ]Know(α)

3. |= Σ0 ∧ ‖R[〈 〉,Ψ(σ, ι)]‖Σ0
⊃ ‖R[〈 〉, [σ]α]‖Σ0

Proof: “1. iff 2.”:
ASK[EXE[INIT[Σ], σ, ι], α] = “yes”

iff (by Definitions 13 and 17)
for all w ∈ <[[Σ ∧ Ψ(σ, ι)]]: <[[Σ ∧ Ψ(σ, ι)]], w, σ |= α

iff (by the semantics)
|= OKnow(Σ ∧ Ψ(σ, ι)) ⊃ Know([σ]α)

iff (by Lemma 20 below)
|= OKnow(Σ) ∧ Ψ(σ, ι) ⊃ [σ]Know(α).
“2. iff 3.”:
|= OKnow(Σ) ∧ Ψ(σ, ι) ⊃ [σ]Know(α)

iff (by Lemma 20 below)
|= OKnow(Σ ∧ Ψ(σ, ι)) ⊃ Know([σ]α)

iff (by Corollary 3 and since R[〈 〉,Ψ(σ, ι)] is objective)
|= OKnow(Σ ∧R[〈 〉,Ψ(σ, ι)]) ⊃ Know([σ]α)

iff (by Theorem 5, viewing R[〈 〉,Ψ(σ, ι)] as part of Σ0)
|= OKnow(Σ0 ∧R[〈 〉,Ψ(σ, ι)]) ⊃ Know(R[〈 〉, [σ]α])

iff (by Corollary 11)
|= OKnow(Σ0 ∧ ‖R[〈 〉,Ψ(σ, ι)]‖Σ0

) ⊃ Know(R[〈 〉, [σ]α])
iff (by Thm. 12, with ‖R[〈 〉,Ψ(σ, ι)]‖Σ0

as part of Σ0)
|= Σ0 ∧ ‖R[〈 〉,Ψ(σ, ι)]‖Σ0

⊃ ‖R[〈 〉, [σ]α]‖Σ0
.

To complete the proof of the theorem, we only need the fol-
lowing lemma:
Lemma 20 Let Σ be a basic action theory and α a basic,
bounded sentence over F . Then
|= OKnow(Σ) ∧ Ψ(σ, ι) ⊃ [σ]Know(α) iff
|= OKnow(Σ ∧ Ψ(σ, ι)) ⊃ Know([σ]α).



Proof: |= OKnow(Σ) ∧ Ψ(σ, ι) ⊃ [σ]Know(α)
iff (by the semantics)

for all w such that w |= Σ and w 'σ w′ for some w′ with
w′ |= Ψ(σ, ι), we have that <[[Σ]], w, σ |= α

iff (by Corollary 18)
for all w with w |= Σ ∧ Ψ(σ, ι), <[[Σ]], w, σ |= α

iff (see below)
for all w with w |= Σ ∧ Ψ(σ, ι), <[[Σ ∧ Ψ(σ, ι)]], w, σ |= α

iff (by the semantics)
|= OKnow(Σ ∧ Ψ(σ, ι)) ⊃ Know([σ]α)

Let e = <[[Σ∧Ψ(σ, ι)]] and e′ = <[[Σ]]. We show by induc-
tion that for w with w |= Ψ(σ, ι),

e′, w, σ · σ′ |= β iff e, w, σ · σ′ |= β.

The cases “=”, “F (~r)”, “∧”,“¬” and “∀” follow immedi-
ately.
“[r]”:
e′, w, σ · σ′ |= [r]β iff e′, w, σ · σ′ · r |= β iff (by induction)
e, w, σ · σ′ · r |= β iff e, w, σ · σ′ |= [r]β.
“Know”:
e′, w, σ · σ′ |= Know(β)

iff (by the semantics)
for all w′ ∈ e′ with w′ 'σ·σ′ w, we have e′, w′, σ · σ′ |= β

iff (using Corollary 18 and w |= Ψ(σ, ι))
for all w′ with w′ |= Σ ∧ Ψ(σ, ι) and w′ 'σ·σ′ w, we have
e′, w′, σ · σ′ |= β

iff (equivalent rewriting)
for all w′ ∈ e with w′ 'σ·σ′ w and w′ |= Ψ(σ, ι), we have
e′, w′, σ · σ′ |= β

iff (by induction)
for all w′ ∈ e with w′ 'σ·σ′ w and w′ |= Ψ(σ, ι), we have
e, w′, σ · σ′ |= β

iff (by the semantics)
e, w, σ · σ′ |= Know(β)

Conclusions
In this paper we considered what it means for an agent
whose knowledge is given in terms of a basic action theory
in ES to pose queries to its own knowledge base after exe-
cuting any number of actions, how to incorporate the result
of sensing information and to accept user input. Compared
to Reiter’s proposal we retained the advantage of reducing
reasoning about knowledge to first-order reasoning, but we
gained considerable expressiveness as we can now handle
knowledge about knowledge and quantifying-in, for exam-
ple. There are essentially two features of ES that have made
this possible. One is the use of standard names or rigid des-
ignators, which allows for a simple model theory which does
not need to appeal to arbitrary first-order structures. The
other is the explicit notion of only-knowing, which gener-
alizes Reiter’s knowledge closure and is semantically well-
founded.

We believe that our results provide us with the founda-
tions to now tackle the next step, a knowledge-based version
of Golog that uses ES instead of Reiter’s situation calcu-
lus. It was shown in (Lakemeyer & Levesque 2005) how
to reconstruct the original Golog in ES. We are currently

working on an extension and implementation which allows
knowledge-based tests and on-line execution as proposed in
this paper.

References
Chellas, B. 1980. Modal logic: an introduction. Cam-
bridge, United Kingdom: Cambridge University Press.
Giacomo, G. D., and Levesque, H. J. 1999. Projection
using regression and sensors. In Proc. IJCAI-99, 160–165.
Jin, Y., and Thielscher, M. 2004. Representing beliefs in
the fluent calculus. In Proc. ECAI-04, 823–827.
Lakemeyer, G., and Levesque, H. J. 1998. AOL: a logic
of acting, sensing, knowing, and only knowing. In Proc.
KR-98.
Lakemeyer, G., and Levesque, H. J. 1999. Query evalu-
ation and progression in AOL knowledge bases. In Proc.
IJCAI-99.
Lakemeyer, G., and Levesque, H. J. 2004. Situations, si!
situation terms, no! In Proc. KR-04. AAAI Press.
Lakemeyer, G., and Levesque, H. J. 2005. Semantics for a
useful fragment of the situation calculus. In Proc. IJCAI-
05.
Levesque, H. J., and Lakemeyer, G. 2001. The Logic of
Knowledge Bases. MIT Press.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. J. Log. Program. 31(1-3):59–
83.
Lobo, J.; Mendez, G.; and Taylor, S. R. 1997. Adding
knowledge to the action description language A. In Proc.
AAAI/IAAI ’97, 454–459.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh: University Press. 463–502.
Moore, R. C. 1977. Reasoning about knowledge and ac-
tion. In Proc. IJCAI-77, 223–227.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-
based approach to planning with incomplete information
and sensing. In Ghallab, M.; Hertzberg, J.; and Traverso,
P., eds., Proc. AIPS-02, 212–222. AAAI.
Reiter, R. 1991. The frame problem in the situation cal-
culus: a simple solution (sometimes) and a completeness
result for goal regression. Artificial intelligence and math-
ematical theory of computation: papers in honor of John
McCarthy 359–380.
Reiter, R. 2001a. On knowledge-based programming with
sensing in the situation calculus. ACM Trans. Comput.
Logic 2(4):433–457.
Reiter, R. 2001b. Knowledge in action : logical founda-
tions for specifying and implementing dynamical systems.
Cambridge, Mass.: MIT Press. The frame problem and the
situation calculus.
Scherl, R. B., and Levesque, H. J. 2003. Knowledge, ac-
tion, and the frame problem. Artif. Intell. 144(1-2):1–39.


