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Abstract. For more than six years, the groups of Franz Baader and
Gerhard Lakemeyer have collaborated in the area of decidable verifica-
tion of Golog programs. Golog is an action programming language,
whose semantics is based on the Situation Calculus, a variant of full
first-order logic. In order to achieve decidability, the expressiveness of
the base logic had to be restricted, and using a Description Logic was
a natural choice. In this chapter, we highlight some of the main results
and insights obtained during our collaboration.
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Prologue

We begin our contribution to celebrate Franz’ 60th birthday with some personal
remarks by the second author, written as a first-person account. As these re-
marks are largely historical, they will also shed light on how the technical work
described later came into being and how it is intimately connected to the work
by Franz and his group in Dresden.

Franz and I first met, I believe, in 1990, when we both gave talks at AAAI
in Boston. Indeed, in those early days, we mainly met at conferences, either
at AAAI, IJCAI or KR. But apart from that, each of us was minding his own
business, Franz working on Description Logics (DLs) and me on the Situation
Calculus and the related action programming language Golog. This is not to
say that I stayed away completely from DLs. While I was still in Bonn, Franz
was nice enough to share his course notes with me so that I could teach a
DL course, which I did exactly once! In 1994, I even published a paper on an
epistemic version of CLASSIC, an early variant of modern DLs, at the German
AI conference. But I soon realized that other people, in particular Franz, were
much better at this, and I left DL to them without any intention to ever return,
or so I thought.
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In 1997, Franz and I became colleagues at RWTH Aachen University. Re-
search-wise we continued our separate ways, but at least we now met regularly
at (often boring) faculty meetings. It was only when Franz moved to Dresden
that things took a different turn. Michael Thielscher, also at TU Dresden at
the time, had the brilliant idea to gather researchers from different areas in KR
and combine work on action formalisms with work on Description Logics, plan-
ning, and nonmonotonic reasoning. In the end, a DFG-funded Research Cluster
on Logic-Based Knowledge Representation was established, initially started by
Franz, Michael, Bernhard Nebel and myself, and later joined by Gerd Brewka.
While I, together with my then Ph.D. student Jens Claßen, collaborated most
closely with Bernhard’s group during this time, the meetings and workshops of
the entire Research Cluster not only helped us to get to know each other bet-
ter personally but to also appreciate each other’s research and the connections
between the different areas much more.

At the time Hongkai Liu, a former Ph.D. student of Franz, worked on up-
dating ABoxes, which is meant to reflect how a world changes. As the external
examiner of Hongkai’s thesis I got to know his work quite well, and I was partic-
ularly intrigued by his chapter on decidable verification of infinite sequences of
updates. At the same time, Jens had started work on the verification of nonter-
minating Golog programs. When the time came to re-apply for funding from
DFG, this time in the form of a Research Unit on “Hybrid Reasoning for Intelli-
gent Systems” [9], Franz had the idea that we should join forces and explore the
verification of Golog programs when the underlying logic is restricted to a DL
fragment with the aim of arriving at decidable forms of verification. When we
received funding for our Research Unit, Jens joined our project on the Aachen
side and Benjamin on the Dresden side. The rest, as they say, is history. We
have collaborated now for almost seven years, and it has been a lot of fun. In
the following, we highlight some of the main results obtained during this time,
but before we begin: Happy Birthday, Franz!

1 Introduction

The agent language Golog [19,33] allows one to describe an agent’s behaviour
in terms of a program containing both imperative and nondeterministic aspects.
Its basic building blocks are the primitive actions that are defined in a theory of
some action logic, typically the Situation Calculus [40,44] or its modal variant
[31], but also formalisms based on Description Logics. Among Golog’s most
promising application areas is the control of autonomous, mobile robots [24,11].

As a very simple, illustrating example, consider a robot whose task it is to
remove dirty dishes from a number of rooms in a building. A program for it
might look like this:
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loop : while (∃x.OnRobot(x)) do
πx:Dish {unload(x)} endWhile;

πy:Room { goto(y);
while (∃xDirty(x, y)) do

πx:Dish load(x, y) endWhile };
goto(kitchen)

The robot is initially in the kitchen. In each iteration of the infinite outer loop,
it first unloads all dishes it carries, selects a room in the building, moves there,
collects all dirty dishes from there, and returns to the kitchen. Here, Dirty(x, y)
means “dirty dish x is in room y”, and load(x, y) stands for “load dish x from
room y.” Constructs of the form πx:Dish moreover are to be read as “non-
deterministically choose one object from the Dish domain and do the following
with it”. We furthermore assume that at any time during operation, some new
dish x to be removed from room y may appear, which is represented through
a special, “exogenous” newdish(x, y) action. Now before deploying such a pro-
gram onto the real robot, it is often desirable to verify it against some temporal
specification, e.g. to make sure that every dish will eventually be removed.

While a large variety of temporal verification methods have been developed
in the field of Model Checking [7,12] over the last decades, the problem of ver-
ifying (typically non-terminating) Golog programs received surprisingly little
attention among Situation Calculus researchers. Note that Model Checking is
not directly applicable due to the fact that even though nowadays implicit, sym-
bolic representations of state spaces are used, their input formalisms are very
restricted in expressivity. Golog on the other hand relies on action descriptions
in terms of (first-order) logical theories that correspond to a very large, if not
infinite number of possible models. Instead of simply checking the property in
question against a single model, theorem proving within the underlying logic is
hence required.

De Giacomo, Ternovska and Reiter [21] were the first to address the verifi-
cation of non-terminating Golog programs. They express programs and their
properties using inductive definitions and fixpoint logics, thus heavily resorting
to second-order quantification. They then do manual, meta-theoretic proofs to
show that the program satisfies the desired properties. While this work was an
important first step, an automated verification would be obviously much more
preferable to a manual one since the latter tends to be tedious and error-prone.

Claßen and Lakemeyer [16] proposed such a method for properties expressed
in a temporal logic that resembles the Computational Tree Logic CTL, but
that allows for unrestricted first-order quantification. The algorithm is inspired
by the classical symbolic model checking techniques for propositional CTL in
the sense that it does a similar fixpoint computation to systematically explore
the system’s state space. The difference however is that it does not work on
a single finite model, but, as explained above, uses a logical first-order action
theory together with the Golog program (which possibly contains further first-
order quantification). The method relies on regression-based reasoning, a newly
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proposed graph-based representation of the input program, and theorem proving
for detecting convergence.

The overall verification problem for Golog is highly undecidable due to un-
restricted first-order quantification in the underlying base logic, the kind and
range of actions’ effects, and Golog being a Turing-complete programming lan-
guage. Consequently, in [16] only soundness of the method was proved, but a
termination guarantee could not be given. A natural next step is to try to iden-
tify restricted, yet non-trivial fragments of Golog where verification becomes
decidable, while a great deal of expressiveness is retained.

A natural choice for a decidable base logic with first-order expressivity is a
Description Logic. Baader, Liu and ul Mehdi [4] considered actions specified in
an action formalism based on the Description Logic ALC [5], and furthermore
abstracted from the actual execution sequences of a non-terminating program
by considering infinite sequences of actions defined by a Büchi automaton. They
expressed properties by a variant of LTL over ALC axioms [2] and could show
that under these restrictions, verification reduces to a decidable reasoning task
within the underlying DL.

Their work was an important first step in the search for a way to overcome the
above mentioned three “sources of undecidability” (i.e. undecidable base logic,
range of action effects, Turing-complete program constructs), even though the
restrictions employed were comparably harsh. In particular, their ALC-based
action formalism only allows for basic STRIPS-style addition and deletion of
literals, and the very simple over-approximation of programs through Büchi au-
tomata loses important features such as the non-deterministic choice of argument
and test conditions. Baader and Zarrieß [6] later showed that these results can
indeed be lifted to a more expressive fragment of Golog that includes test
conditions. They obtained decidability by proving that the potentially infinite
transition system induced by the Golog program can always be represented by
a finite one that admits the exact same execution traces. This was the start of
a complementary line of research based on the approach of applying restrictions
that allows one to compute a finite, propositional abstraction of the infinite state
space, and then use a classical model checker to decide the query.

In this paper we want to give a brief, yet concrete impression of research
conducted on both approaches, the Golog-specific fixpoint method as well as
abstraction methods, within the aforementioned Research Unit on “Hybrid Rea-
soning for Intelligent Systems”. The following section introduces some formal
preliminaries. Sections 3 and 4 then present the Golog-specific fixpoint method
and the abstraction technique, respectively. DL-based representations, their rela-
tion to Situation Calculus formalizations, as well as computational complexities
are then discussed in Section 5. Section 6 gives a survey of further research we
conducted, followed by a conclusion in Section 7.
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2 Preliminaries

2.1 The Logic ES

We use a fragment of the first-order modal Situation Calculus variant ES [31],
and corresponding Basic Action Theories (BATs) [44].
Syntax: There are terms of sort object and action. Variables of sort object are
denoted by symbols x, y, . . ., and a denotes a variable of sort action. NO is a
countably infinite set of object constant symbols and NA a countably infinite set
of action function symbols with arguments of sort object. We denote the set of
all ground terms (also called standard names) of sort object by NO, and those
of sort action by NA.

Formulas are built using fluent predicate symbols (predicates that may vary
as the result of actions) of any arity and equality, using the usual logical connec-
tives and quantifiers. In addition we have two modalities for referring to future
situations, where 2φ says that φ holds after any sequence of actions, and [t]φ
means that φ holds after executing action t.

A formula without 2 and [·] is called fluent formula, one without 2 bounded,
and one without free variables a sentence.
Semantics: Let Z := N ∗A be the set of all finite action sequences (including
the empty sequence 〈〉) and PF the set of all primitive formulas F (n1, ..., nk),
where F is a k-ary fluent and the ni are object standard names. A world w maps
primitive formulas and situations to truth values: w : PF ×Z → {0, 1}. The set
of all worlds is denoted by W.

Definition 1 (Truth of Formulas). Given a world w ∈ W and a sentence ψ,
we define w |= ψ as w, 〈〉 |= ψ, where for any z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;
2. w, z |= (n1 = n2) iff n1 and n2 are identical;
3. w, z |= ψ1 ∧ ψ2 iff w, z |= ψ1 and w, z |= ψ2;
4. w, z |= ¬ψ iff w, z 6|= ψ;
5. w, z |= ∀x.φ iff w, z |= φxn for all n ∈ Nx;
6. w, z |= 2ψ iff w, z · z′ |= ψ for all z′ ∈ Z;
7. w, z |= [t]ψ iff w, z · t |= ψ.

Above, Nx refers to the set of all standard names of the same sort as x. We
moreover use φxn to denote the result of simultaneously replacing all free occur-
rences of x in φ by n. Note that by rule 2 above, the unique names assumption
for actions and object constants is part of our semantics. We understand ∨, ∃,
⊃, ≡ and > and ⊥ as the usual abbreviations.

Definition 2 (Basic Action Theory). A basic action theory (BAT) D =
D0 ∪ Dpost is a set of axioms consisting of:

1. D0, the initial theory, a finite set of fluent sentences describing the initial
state of the world;
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2. Dpost a finite set of successor state axioms (SSAs), one for each fluent rel-
evant to the application domain, incorporating Reiter’s [43] solution to the
frame problem, for encoding action effects. They have the form4

2[a]F (x) ≡ γ+F ∨ F (x) ∧ ¬γ−F , (1)

where the positive (negative) effect condition γ+F (γ−F ) is a fluent formula
with free variables a and x.

Normally, BATs also feature action precondition axioms, which we ignore here
for simplicity.

Example 1. For the aforementioned dish robot we may have

D0 = {¬∃x, yDirty(x, y), ¬∃xOnRobot(x)}.

Also, let Dpost consist of the following SSAs (we abstract from the robot’s loca-
tion for simplicity):

�[a]Dirty(x, y) ≡ a = newdish(x, y) ∨Dirty(x, y) ∧ a 6= load(x, y)

�[a]OnRobot(x) ≡ ∃y. a = load(x, y) ∨OnRobot(x) ∧ a 6= unload(x).

2.2 Golog Programs and Verification

The primitive actions defined in the BAT can be used as basic building blocks
for Golog programs as follows.

Definition 3 (Golog Program). A program δ is built according to the follow-
ing grammar:

δ ::= t | ψ? | δ;δ | δ|δ | δ∗ | δ||δ.

A program can thus be action t, a test ψ? for some fluent formula ψ, or con-
structed from subprograms by means of sequence δ;δ, non-deterministic choice
δ|δ, non-deterministic iteration δ∗, and interleaving δ||δ. We treat if, while, loop
and the finitary non-deterministic choice of argument (“pick”) as abbreviations:

if φ then δ1 else δ2 endIf
def
= [φ?; δ1] | [¬φ?; δ2]

while φ do δ endWhile
def
= [φ?; δ]

∗
;¬φ?

loop δ
def
= while > do δ endWhile

πx:{c1, . . . , ck}. δ def= δxc1 | · · · | δxck
4 Free variables are understood as universally quantified from the outside; 2 has lower

syntactic precedence than the logical connectives, [t] has higher precedence than the
logical connectives. So 2[a]F (x) ≡ γF abbreviates ∀a,x.2(([a]F (x)) ≡ γF ).
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An example for a program was presented in the introduction. Exogenous actions
can be incorporated by having a loop that, in each cycle, executes one such
action with non-deterministically chosen arguments

δexo = loop πx:Dish πy:Room newdish(x, y)

run concurrently with the actual control program δctl, i.e. in the verification one
analyzes the behaviour of δctl || δexo.

Following [16] we define the transition semantics of programs meta-theoreti-
cally. A configuration 〈z, ρ〉 consists of an action sequence z ∈ Z (that has already
been performed) and a program ρ (that remains to be executed). Execution of a

program in a world w ∈ W yields a transition relation
w−→ among configurations

that is defined inductively over program expressions:

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉;
2. 〈z, δ1; δ2〉 w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉 w−→ 〈z · t, γ〉;
3. 〈z, δ1; δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 w−→ 〈z · t, δ′〉;
4. 〈z, δ1|δ2〉 w−→ 〈z · t, δ′〉, if 〈z, δ1〉 w−→ 〈z · t, δ′〉 or 〈z, δ2〉 w−→ 〈z · t, δ′〉;
5. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉;
6. 〈z, δ1||δ2〉 w−→ 〈z · t, δ′||δ2〉, if 〈z, δ1〉 w−→ 〈z · t, δ′〉;
7. 〈z, δ1||δ2〉 w−→ 〈z · t, δ1||δ′〉, if 〈z, δ2〉 w−→ 〈z · t, δ′〉.

For the set of final configurations Fw wrt. a world w we have:

1. 〈z, 〈〉〉 ∈ Fw;
2. 〈z, ψ?〉 ∈ Fw, if w, z |= ψ;
3. 〈z, δ1; δ2〉 ∈ Fw, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;
4. 〈z, δ1|δ2〉 ∈ Fw, if 〈z, δ1〉 ∈ Fw or 〈z, δ2〉 ∈ Fw;
5. 〈z, δ∗〉 ∈ Fw;
6. 〈z, δ1‖δ2〉 ∈ Fw, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw.

Definition 4 (Transition System of a Program). Let δ be a program and
w ∈ W. Execution of δ in w yields the transition system wrt. w, δ given by
Twδ =

(
S,→), where the set of states S = {〈z′, δ′〉 | 〈〈〉, δ〉 w−→∗〈z′, δ′〉} ∪ {e, f}

consists of configurations reachable from 〈〈〉, δ〉 plus two special “sink” states for
program termination and failure, and → is a transition relation such that s→ s′

iff one of the following holds:

1. s
w−→ s′;

2. s′ = e and (s ∈ Fw or s = e);

3. s′ = f and (no s′′ with s
w−→ s′′ and s 6∈ Fw or s = f).

Definition 5 (Temporal Properties of Programs). The syntax for tempo-
ral formulas is the same as for propositional CTL∗, but in place of propositions
we allow fluent sentences ψ in Boolean combinations with the special symbols
Succ and Fail (for program termination and failure, respectively):

Ψ ::= ψ | Succ | Fail | ¬Ψ | Ψ ∧ Ψ | EΦ (2)

Φ ::= Ψ | ¬Φ | Φ ∧ Φ |XΨ | Ψ U Ψ (3)
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Formulas according to (2) are temporal state formulas, and according to (3)
temporal path formulas. We use the usual abbreviations AΦ (Φ holds on all
paths) for ¬E¬Φ, FΦ ( eventually Φ) for > U Φ and GΦ ( globally Φ) for ¬F¬Φ.

Now let Ψ be a temporal state formula, Twδ the transition system wrt. w, δ, and
s ∈ S. For an infinite path

π = s0 → s1 → s2 → · · ·

in Twδ , we denote for any j ≥ 0 the state sj by π[j] and the suffix sj → sj+1 → · · ·
by π[j..]. Paths(s,Twδ ) denotes the set of all paths starting in s. Truth of Ψ in
Twδ , s (written Twδ , s |= Ψ ) is given by:

– Twδ , s |= ψ iff s = 〈z′, δ′〉 and w, z′ |= ψ;
– Twδ , s |= Succ iff s = e;
– Twδ , s |= Fail iff s = f;
– Twδ , s |= ¬Ψ iff Twδ , s 6|= Ψ ;
– Twδ , s |= Ψ1 ∧ Ψ2 iff Twδ , s |= Ψ1 and Twδ , s |= Ψ2;
– Twδ , s |= EΦ iff π ∈ Paths(s,Twδ ) with Twδ , π |= Φ.

Let Φ be a temporal path formula, Twδ and s as above, and π ∈ Paths(s,Twδ ).
Truth of Φ in Twδ , π (written Twδ , π |= Φ) is given by:

– Twδ , π |= Ψ iff Twδ , π[0] |= Ψ ;
– Twδ , π |= ¬Φ iff Twδ , π 6|= Φ;
– Twδ , π |= Φ1 ∧ Φ2 iff Twδ , π |= Φ1 and Twδ , π |= Φ2;
– Twδ , π |= XΦ iff Twδ , π[1..] |= Φ;
– Twδ , π |= Φ1 U Φ2 iff ∃k ≥ 0 : Twδ , π[k..] |= Φ2

and ∀j, 0 ≤ j < k : Twδ , π[j..] |= Φ1.

The sink states e, f and the corresponding special symbols Succ, Fail allow us
to treat terminating programs simply as special cases of non-terminating ones,
where once a program terminates successfully or due to failure, the program will
indefinitely loop through e or f, respectively. Furthermore, we can analyze the
termination behaviour of a program simply by verifying appropriate temporal
properties, e.g. AFSucc (the program is guaranteed to terminate) or EFFail
(the program may fail).

Example 2. Some temporal properties for the (non-terminating) dish robot are:

EFDirty(d1, room) “Is it possible that d1 ends up dirty in room?”
AG¬∃xDirty(d1, x) “Will d1 always remain cleaned?”
EG∃x, yDirty(x, y) “Will there forever be a dirty dish in some room?”

In the following, we will use a restricted subset of temporal formulas that re-
sembles CTL without nesting of path quantifiers (but still with fluent sentences
instead of propositions):

ϕ ::= ψ | Succ | Fail | ¬ϕ | ϕ ∧ ϕ (4)

Ψ ::= ϕ | ¬Ψ | Ψ ∧ Ψ | EXϕ | EGϕ | E(ϕ U ϕ) (5)
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CTL formulas according to (5) are obviously a subset of temporal state formulas.
Note that the properties from Example 2 are all part of this subset using AGϕ ≡
¬EF¬ϕ.

Definition 6 (Verification Problem). A temporal state formula Ψ is valid
in a program δ for a BAT D iff for all worlds w ∈ W with w |= D it holds that
Twδ , 〈〈〉, δ〉 |= Ψ .

3 Verification by Fixpoint Computation

The first approach [16,13,17] is inspired by classical symbolic model checking
[41] in the sense that a systematic exploration of the state space is made using
a fixpoint computation of preimages of state sets, however now involving first-
order reasoning about actions. For this purpose, an ES variant [31] of Reiter’s
[43] regression operator is employed, which replaces fluent atoms in the scope of
a [t] by the right-hand side of the corresponding SSA:

Definition 7 (Regression). Let ψ be a bounded formula. We define R[ψ] =
R[〈〉, ψ], where for any z ∈ Z,

1. R[〈〉, F (t)] = F (t) and R[z · t, F (t)] = (γ+F ∨ F (x) ∧ ¬γ−F )
x a

t t ;
2. R[z, (t1 = t2)] = (t1 = t2);
3. R[z, ψ1 ∧ ψ2] = R[z, ψ1] ∧R[z, ψ2];
4. R[z,¬ψ] = ¬R[z, ψ];
5. R[z,∀xψ] = ∀xR[z, ψ];
6. R[z, [t]ψ] = R[z · t, ψ].

Theorem 1. If D is a BAT and ψ a bounded formula, then D |= 2(ψ ≡ R[ψ]).

R[ψ] is hence equivalent to the original ψ wrt. D, but contains no [·] and only
talks about the initial (current) situation.

In addition to regression, another ingredient for the verification method are
characteristic graphs, which are used to encode the reachable subprogram con-
figurations. For any program δ, the graph Gδ = 〈V,E, v0〉 consists of a set of
vertices V , each of which corresponds to one reachable subprogram δ′, or e or f.
The initial node v0 corresponds to the overall program δ. Edges E are labelled
with tuples t/ψ, where t is an action term and ψ a fluent formula (omitted
when >) denoting the condition required to take that transition. We omit the
formal definition; the interested reader is referred to [13]. As an example, Figure
1 shows the graph for the control program of the dish robot as presented in
the introduction, assuming that the Room domain only contains a single room.
The asterisks in edge annotations such as newdish(∗, room) indicates that there
is one such edge instance for every element in the Dish domain. (Graphs for
programs where the Room domain is larger contain one “copy” of node v1 for
each room, with similar connections to v0 and itself.) The algorithm uses a set
of labels 〈v, ψ〉, one for each node v ∈ V , where ψ is a fluent formula. Intuitively,
if v = δ′, then 〈v, ψ〉 represents all combinations of worlds w and configurations
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v0 v1

newdish(∗, room)

unload(∗)/
∃x.OnRobot(x)

newdish(∗, room)

load(∗, room)/
∃x.Dirty(x, room)

goto(room)/
¬∃x.OnRobot(x)

goto(kitchen)/
¬∃x.Dirty(x, room)

Fig. 1. Characteristic Graph for the Dish-Cleaning Robot

〈z, δ〉 with w, z |= ψ. Below is the procedure for formulas of form EGφ, similar
ones exist for EX and EU [13]:

Procedure 1 CheckEG[δ, φ]

1: L′ := Label[Gδ,⊥]; L := Label[Gδ, φ];
2: while L 6≡ L′ do
3: { L′ := L; L := L′ And Pre[Gδ, L′] };
4: return InitLabel[Gδ, L]

That is to say first the “old” labelling L′ is initialized to label every node with ⊥
and the “current” labelling L marks every vertex with φ. While L and L′ are not
equivalent (ψ ≡ ψ′ for every 〈v, ψ〉 ∈ L, 〈v, ψ′〉 ∈ L′), L is conjoined according
to

L1 And L2
def
= {〈v, ψ1 ∧ ψ2〉 | 〈v, ψ1〉 ∈ L1, 〈v, ψ2〉 ∈ L2}

with its pre-image

Pre[〈V,E, v0〉, L]
def
= {〈v,Pre[v, L]〉 | v ∈ V }

where Pre[v, L] stands for

∨
{R[φ ∧ [t]ψ] | v t/φ−−→ v′ ∈ E, 〈v′, ψ〉 ∈ L}.

Note the use of regression to eliminate the action term t. Once the label set has
converged, the method returns InitLabel[Gδ, L], the label formula at the initial
node v0. The algorithm is sound as follows:

Theorem 2. Let D be a BAT, δ a program, and φ a fluent formula. If the
procedure terminates, then ψ := CheckEG[δ, φ] is a fluent formula and EGφ is
valid in δ for D iff D0 |= ψ.
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Example 3. Suppose we want to verify whether a run of the program for the
dish robot presented in the introduction (including possible exogenous actions)
is possible where there is always some dirty dish x in some room y, i.e. whether
it satisfies property EG∃x, yDirty(x, y). We hence call Procedure 1 with δ =
δctl || δexo being the overall program and the axiom φ = ∃x, yDirty(x, y). It starts
with the following label set L:

L0 = {〈v0,∃x, yDirty(x, y)〉, 〈v1,∃x, yDirty(x, y)〉}.

For determining the pre-image for a node in the characteristic graph, each
of its outgoing edges has to be considered. Recall that we have multiple in-
stances of each newdish(di, room) with different dishes di. One of the disjuncts
of Pre[v0, L0] thus is

R[[newdish(d1, room)]∃x, yDirty(x, y)]

which (using unique names of actions) reduces to

∃x, y. x = d1 ∨Dirty(x, y).

Using similar reductions for the other edges we get Pre[v0, L0] and Pre[v1, L0]
both being equivalent to

∃x, y. x = d1 ∨ x = d2 ∨Dirty(x, y)

if there are two dishes in total. Then L1 =
(
L0 And Pre[Gδ, L0]

)
, which reduces

to
{〈v0,∃x, yDirty(x, y)〉, 〈v1,∃x, yDirty(x, y)〉}

Hence L0 ≡ L1, i.e. the algorithm terminates and returns ∃x, yDirty(x, y). Thus,
there is a run where there is always some dirty dish just in case there is some
dirty dish somewhere initially. Intuitively, this is correct because Gφ means that
φ persists to hold during the entire run, including the initial situation. Therefore,
only if a dish is dirty initially it may happen that never all of them get cleaned.
All we have to do now is to check whether D0 |= ∃x, yDirty(x, y)〉, which is not
the case according to the D0 from Example 1.

Naturally, the next interesting question is under what circumstances it can be
guaranteed that the procedure terminates as it did here, thus rendering the ver-
ification problem decidable. As first-order logic is already undecidable, the first
step is to ensure that the basic, first-order reasoning tasks of checking the equiv-
alence of label formulas and whether the output of CheckEG[δ, φ] is entailed
by the BAT’s initial theory can be decided. We do so restricting the base logic
to FO2, the two-variable fragment of FOL. We hence require that

– fluents have at most two arguments;
– D0, tests φ? in the program δ as well as axioms ψ in temporal properties Ψ

are formulas where x and y are the only variable symbols;
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– the instantiations of γ+F and γ−F by any ground action from δ are formulas
where x and y are the only variable symbols..

Note that in this paper we assume all actions in a program are ground (our
definition of Golog does not include the general nondeterministic choice of
argument π, but a finitary version where each π only ranges over some finite
domain). It can be shown [51] by means of a reduction of the Halting Problem
for Turing Machines that otherwise, the Golog Verification Problem remains
undecidable, even under all other restrictions we discuss here. The BAT from
Example 1 and the properties from Example 2 all fulfill these requirements.

While there are other decidable fragments of first-order predicate calculus,
note that not all are equally suited for our purposes. In particular, decidable
quantifier prefix fragments for instance have the disadvantage that they are not
closed under regression, i.e. the regression of such a formula may not be express-
able by a formula in the same fragment. This is the case for FO2 on the other
hand, provided that the regression operator is slightly modified to rename vari-
ables where needed [26]. Moreover, note that the FO2 fragment subsumes many
Description Logics, so its choice paves the way for a method where representation
and reasoning is handled entirely within a DL.

Now that we restricted the base logic and the class of programs we consider,
the last restriction is on the range of action effects we allow. Again, it can be
shown that without any such restriction, verification remains undecidable [51].
A popular subclass of action theories (originally studied within the context of
progression) is that where actions only have local effects [37]:

Definition 8 (Local-Effect). An SSA is local-effect if the conditions γ+F and
γ−F are disjunctions of formulas ∃z[a = A(y)∧φ], where A is an action function,
y contains x, z are the remaining variables of y, and φ is a fluent formula with
free variables y. A BAT is local-effect if all its SSAs are.

Intuitively, an action A(c) is local-effect if it only changes fluents F (d) all of
whose arguments d are among the action’s parameters c, i.e. all objects af-
fected have to be mentioned in the action. Note that the SSAs in Example 1 are
local-effect. In [17] it was shown that under these assumptions, the verification
procedure becomes complete:

Theorem 3. The procedure CheckEG[δ, φ] terminates if the BAT is local-effect
and FO2 is used as base logic.

There are similar theorems for the other cases EX and EU.

4 Verification by Abstraction

The second method we consider is verification by abstraction. Zarrieß and Claßen
[52] show that for a Golog program δ with a local-effect BAT D, the verifica-
tion of a temporal formula Ψ can be reduced to classical model checking by
constructing a finite, bisimilar abstraction of the original infinite transition sys-
tem induced by δ and D wrt. Ψ . This is achieved by identifying finitely many
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equivalence classes for worlds, whose computation reduces to consistency checks
in the underlying decidable base logic FO2.

4.1 Regression with Sets of Effects

The first ingredient is the observation that by unique names of actions, the in-
stantiation of a local-effect SSA on a ground action t = A(c) can be significantly
simplified [38], as any γ+F

a

t or γ−F
a

t is equivalent to

x = c1 ∧ φ1 ∨ · · · ∨ x = cn ∧ φn

where ci is a vector of names contained in c, and φi is a quantifier-free sentence.
We use the notation (ci, φi) ∈ γ+F

a

t and (ci, φi) ∈ γ−F
a

t to express that there is a

disjunct of the form x = ci ∧ φi in γ+F
a

t or γ−F
a

t , respectively. Let L be the set of
all positive and negative ground fluent literals:

L = {F (c),¬F (c) | t ∈ δ : (c, φ) ∈ γ+F
a

t or (c, φ) ∈ γ−F
a

t }

One can then define a variant of regression wrt. an effect set, given a consistent
set of fluent literals and a fluent sentence.

Definition 9 (Regression with Effects). If F (v) is a fluent atom where v is
a vector of variables or constants, and E ⊆ L a consistent set of fluent literals,
then the regression of F (v) through E, written as R[E,F (v)] is given by:

R[E,F (v)] =

(
F (v) ∧

∧

¬F (c)∈E
(v 6= c)

)
∨

∨

F (c)∈E
(v = c)

For any fluent sentence α, R[E,α] denotes the result of replacing any occurrence
of a fluent F (v) by R[E,F (v)].

Example 4. For the dish robot, the ground actions to consider are all instances
of newdish(∗, room), unload(∗), load(∗, room), goto(room), and goto(kitchen).
For t = newdish(d1, room) we have:

γ+Dirty

a

t
= (x = d1 ∧ y = room)

γ−Dirty

a

t
= ⊥

The literals that are possible effects of the ground actions hence are:

L = { (¬)Dirty(d1, room), (¬)Dirty(d2, room),

(¬)OnRobot(d1), (¬)OnRobot(d2) }

Let E = {Dirty(d1, room)}. Then for example,

R[E,¬∃x, yDirty(x, y)] = ∃x, y ¬
(
Dirty(x, y) ∨ (x = d1 ∧ y = room)

)
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Clearly, the regression result R[E,α] is again a fluent sentence. We note that an
iterated application of the regression operator can be reduced to an application
of the operator for a single set of fluent literals. For a set E ⊆ L we define
¬E := {¬l | l ∈ E} (modulo double negation). For two consistent subsets E,E′

of L and a sentence α it holds that

R[E,R[E′, α]] ≡ R[(E \ ¬E′ ∪ E′), α]. (6)

The idea is that any such set of literals then represents a class of action sequences
that all bring about the same set of accumulated effects.

4.2 Finite Abstraction

To construct the abstract transition system, we identify the context C(D, δ), the
set of all relevant fluent sentences

– in the initial theory D0;
– in all tests ψ? occurring in the program δ;
– all φ with (c, φ) ∈ γ+F

a

t or (c, φ) ∈ γ−F
a

t for some t in δ;

– all F (c) with (c, φ) ∈ γ+F
a

t or (c, φ) ∈ γ−F
a

t for some t in δ;
– all axioms occurring in temporal properties.

Furthermore, C(D, δ) is assumed to be closed under negation. Intuitively, worlds
satisfying the same maximal consistent set of context formulas are considered to
be members of the same equivalence class, called a type. To incorporate actions,
also the regressions of these formulas wrt. all consistent E′ ⊆ L have to be taken
into account. States belonging to the same equivalence class can be shown to
simulate one another, i.e. they are indistinguishable through temporal properties.
This bisimulation justifies the construction of the corresponding quotient system
as an abstraction, which can be obtained as follows. Abstract states are tuples
〈v, Γ, E〉, where v is a node of the characteristic graph of δ, Γ is a consistent set
of (regressed) context formulas representing worlds, and E ⊆ L is a consistent set

of accumulated effects representing situations. There is a transition 〈v, Γ, E〉 t→
〈v′, Γ, E′〉 between abstract states in case

1. there is an edge v
t/ψ−−→ v′ in δ’s characteristic graph,

2. Γ |= R[E,ψ], and
3. E′ = (E \ ¬E∗ ∪ E∗), where E∗ = E(Γ,E, t).

Above, E(Γ,E, t) denotes the set of effects induced by action t wrt. the type
given by Γ and E:

E(Γ,E, t) = { F (c) | (c, φ) ∈ γ+F
a

t , Γ |= R[E, φ]} ∪
{¬F (c) | (c, φ) ∈ γ−F

a

t , Γ |= R[E,F (c) ∧ φ]}

Example 5. In our running example, the relevant fluent sentences are
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(¬)∃x, yDirty(x, y), (¬)∃xOnRobot(x), (¬)∃xDirty(x, room),
(¬)Dirty(d1, room), (¬)Dirty(d2, room),
(¬)OnRobot(d1), (¬)OnRobot(d2), (¬)∃xDirty(d1, x)

One possible type (in fact the only one consistent with the initial theory of the
BAT from Example 1) is given by

Γ0 = {¬∃x, yDirty(x, y), ¬∃xOnRobot(x)}

One abstract state is

s1 = 〈v0, Γ0, {Dirty(d1, room)}〉,

which intuitively represents for any configuration where the overall program δ =
δctl || δexo remains to be executed, whose initial situation was as described by D0,
and where a sequence of actions has been performed that caused Dirty(d1, room)
to come about (e.g. a single newdish(d1, room), but also any sequence where
other dirty dishes except d1 have been removed already).

The characteristic graph depicted in Figure 1 shows three kinds of out-
going edges for v0, all of which correspond to potential transitions from s0.
newdish(di, room) edges have no transition condition. Their effects are given by

E(Γ0, {Dirty(d1, room)},newdish(di, room)) = {Dirty(di, room)},

hence we have s1 → si for

si = 〈v0, Γ0, {Dirty(d1, room),Dirty(di, room)}〉

(i.e. for i = 1 we remain in s1). For any unload(di) edge, condition ∃xOnRobot(x)
regresses to

R[{Dirty(d1, room)},∃xOnRobot(x)] = ∃xOnRobot(x)

(adding a dirty dish has no effect on whether the robot is holding something).
Since Γ0 6|= ∃xOnRobot(x), there is no unload(di) transition from s1. Finally, for
the goto(room) edge, the transition condition similarly regresses to

R[{Dirty(d1, room)},¬∃xOnRobot(x)] = ¬∃xOnRobot(x).

As Γ0 |= ¬∃xOnRobot(x), there is a transition s1 → s′1 with

s′1 = 〈v1, Γ0, {Dirty(d1, room)}〉.

Recall that in this simple encoding, goto actions do not have any effect, i.e.

E(Γ0, {Dirty(d1, room)}, goto(room)) = ∅.

There are only finitely many nodes in the characteristic graph, relevant fluent
sentences, and ground fluent literals as effects. The abstract transition system is
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hence finite, and can be effectively computed due to the fact that the necessary
consistency and entailment checks in FO2 are all decidable.

Finally, we can replace every relevant fluent sentence with a propositional
atom (both in abstract states and temporal properties) and then call a proposi-
tional CTL model checker.

The complexity of this decision procedure is mainly determined by the com-
plexity of consistency checks in FO2, which we have to do for exponentially large
knowledge bases. Knowledge base consistency in FO2 is NexpTime-complete
[25], so determining a single type can be done in N2ExpTime. It turns out that
co-N2ExpTime is an upper bound for the overall complexity.

Theorem 4. The verification problem is decidable for a temporal state formula
Ψ , a program δ over ground actions and a local-effect BAT D in co-N2ExpTime.

5 Golog Programs over Description Logic Actions

Motivated by the idea of obtaining a decidable yet expressive fragment of the
Situation Calculus, a first DL-based action formalism was introduced by Baader
and his colleagues in [5]. Next, we briefly review some of the basic definitions of
a simple formalism that we have used in [54,50] to analyze the complexity of the
verification problem in a DL-based setting. It is a bit different from the one in
[5] but adopts its main ideas.

The expressive DL ALCQIO, which can be viewed as a fragment of the two
variable fragment of first-order logic with counting, is the underlying logic. It
is used for representing an incomplete initial situation (ABox part of the KB),
general domain knowledge (TBox) and for formulating pre-conditions and effect
conditions of primitive actions by means of action descriptions.

The signature for describing complex concepts consists of pairwise disjoint
sets of concept names NC (unary predicates), role names NR (binary predicates)
and individual names NI. Several constructors can be used to form complex
concepts from A ∈ NC, s ∈ NR ∪ {r− | r ∈ NR} (a role name or the inverse
thereof), a ∈ NI and n ∈ N as shown in the first two columns of Table 1.
Fragments of ALCQIO are obtained by restricting the available constructors for
building concepts. For example, the basic DL ALC is obtained by disallowing
at-most and at-least restrictions (the letter Q in the name of the DL indicates
that those restrictions are allowed), inverse roles (I) and nominals (O).

As usual, axioms are grouped in boxes. The TBox is a finite set of concept
inclusions and the ABox a finite set of concept and role assertions as shown in
the first two columns of Table 2.

The semantics is defined in terms of an interpretation I = (∆I , ·I), where
∆I is the non-empty domain of I, and ·I a function that maps concept names
to subsets of the domain, role names to binary relations, individual names to
elements, and is extended to complex concepts as shown in Table 1. Satisfaction
of an axiom in an interpretation is defined as shown in Table 2. An interpretation
I is a model of an ABox A, a TBox T or a KB K iff all axioms in A, T or K,
respectively, are satisfied in I.
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Name Syntax Semantics under I = (∆I , ·I)

role name r rI

inverse role r− {(e, d) | (d, e) ∈ rI}

concept name A AI

top concept > ∆I
negation ¬C ∆ \ CI

conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
existential restriction ∃s.C {d | ∃e.(d, e) ∈ sI , e ∈ CI}
value restriction ∀s.C {d | (d, e) ∈ sI implies e ∈ CI}
at-most restriction ≤n s.C {d | ]{e | (d, e) ∈ sI ∧ e ∈ CI} ≤ n}
at-least restriction ≥n s.C {d | ]{e | (d, e) ∈ sI ∧ e ∈ CI} ≥ n}
nominal {a} {aI}

Table 1. Syntax and semantics of roles and concepts

Name Axiom % I |= %, iff

TBox T concept inclusion C v D CI ⊆ DI

ABox A concept assertion a : C aI ∈ CI
role assertion (a, b) : s (a, b) ∈ sI

Table 2. Syntax and semantics of axioms

Obviously, a DL like ALCQIO is too inexpressive to formulate basic action
theories as a whole like the ones in Definition 2. An alternative approach would
be to take an axiomatization in form of a BAT and a program formulated in ES
and restrict the formulas used for domain specific knowledge in the initial theory,
the successor state axioms, and tests in the program to be ALCQIO-axioms.
However, for the DL-based formalism in [5] and its variants and successors, a
different approach was taken which we briefly review below.

The overall idea is not to axiomatise the meaning of actions using quantifica-
tion, but introduce action descriptions meta-theoretically. The syntax is similar
to planning languages like STRIPS or ADL: the domain designer explicitly pro-
vides a complete list of effects for each primitive action name. The semantics
of an action is defined in terms of a transition relation between interpretations
such that the frame assumption is respected. First, we define the syntax of an
effect.

Definition 10 (Effect Description). Let L be a sub-DL of ALCQIO and let
A ∈ NC, r ∈ NR and a, b ∈ NI and ϕ an L-axiom (or Boolean combination of
axioms). An L-effect description (L-effect for short) has one of the following
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forms

ϕ . 〈A(o)〉+, ϕ . 〈r(o, o′)〉+ (called add-effect),

ϕ . 〈A(o)〉−, ϕ . 〈r(o, o′)〉− (called delete-effect),

where ϕ is called effect condition. In case the effect condition ϕ is a tautology
like for example > v >, the effect is called unconditional and is written without
the effect condition.

For a set of effects and an interpretation, the corresponding updated inter-
pretation is defined in a straightforward way.

Definition 11 (Interpretation Update). Let I = (∆I , ·I) be an interpreta-
tion and E a set of unconditional effects. The update of I with E is an interpre-

tation denoted by IE = (∆IE , ·I
E

) and is defined as follows:

∆IE := ∆I ;

AI
E

:= AI \ {aI | 〈A(a)〉− ∈ E} ∪ {bI | 〈A(b)〉+ ∈ E} for all A ∈ NC;

rI
E

:= rI \ {(aI , bI) | 〈r(a, b)〉− ∈ E} ∪ {(aI , bI) | 〈r(a, b)〉+ ∈ E} for all r∈NR;

aI
E

:= aI for all a ∈ NI.

Let E be a set of (possibly conditional) effects. The update of I with E, denoted
by IE, is given by the update

IE(I) with E(I) := {l | (ϕ . l) ∈ E, I |= ϕ}.

An action theory in this setting just consists of an initial KB and a finite set
of actions, each associated with a finite set of effects.

Definition 12. An L-action theory Σ is a tuple Σ = (K,Act,Eff), where K is
an L-KB describing the initial state, Act is a finite set of action names, and for
each α ∈ Act, the effects of α, denoted by Eff(α), is a finite set of L-effects.

We can now extend the definition of an interpretation update to sequences
of actions. Let I be an interpretation, Σ = (K,Act,Eff) an action theory, and
σ ∈ Act∗ a sequence of action names. The update of I with σ is an interpretation
Iσ defined by induction on the length of σ as follows: I〈〉 := I for the empty

sequence and Iσ′·α = Iσ′E
, where E = Eff(α)(Iσ′

).

Definition 13. The projection problem is a simple instance of the verification
problem that can now be defined as follows. Let Σ = (K,Act,Eff) be an action
theory, σ ∈ Act∗ a sequence of action names, and % an axiom. We say that % is
true after doing σ in Σ iff for all models I of K we have that % is satisfied in
Iσ.
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For the formalism in [5] it was shown that the projection problem can be
solved by a polynomial reduction to a standard KB consistency task. Thus, the
complexity is the same as for standard reasoning.

As an example consider an action theory

Σ = (K = A ∪ T ,Act = {discon(d, p), turn-on(d)},Eff)

for a domain with concept names DishWasher , PowerSupply , On and a role
name connected . The following concept assertions describe an initial situation
involving individuals d and p:

A = {d : (DishWasher u ∃connected .PowerSupply) , p : PowerSupply}. (7)

As a concept inclusion we can express that a dish washer that is powered on
must be connected to some power supply:

T = {DishWasher uOn v ∃connected .PowerSupply}. (8)

We consider two actions discon(d, p) (for disconnecting d and p) and turn-on(d)
with the following conditional effects:

Eff(turn-on(d)) := {(d : (∃connected .PowerSupply)) . 〈On(d)〉+};
Eff(discon(d, p)) := { 〈connected(d, p)〉−,

(d : (∀connected .({p} t ¬PowerSupply))) . 〈On(d)〉−}.

The action turn-on(d) only is effective if d is connected to some power supply,
and discon(d, p) in addition to disconnecting d and p makes sure that d is no
longer an instance of On in case p was the only power supply connected to d
before the disconnection. Note that the effect conditions make sure that axiom
(8) is never violated due to an action execution.

It is rather straightforward to provide a Situation Calculus semantics for
ALCQIO-action theories. That is, for an action theory Σ = (K,Act,Eff), se-
quence σ ∈ Act∗, and axiom % as projection query, one can construct a corre-
sponding basic action theory DΣ such that % is true after doing σ in Σ iff the
following entailment

DΣ |=ES [σ]fol(%),

holds in ES, where fol(·) denotes the translation from DL syntax to FOL syntax.
For instance, the effect condition of the delete effect 〈On(d)〉− of discon(d, p) is
equivalent to the FOL sentence

∀x. (connected(d, x)→ (x = p ∨ ¬PowerSupply(x))) .

Since actions only affect named individuals in effect descriptions, the resulting
BAT is one with only local effects. We can now describe Golog programs over
Description Logic actions as follows.
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Definition 14. The base logic L is a DL between ALC and ALCQIO, and the
initial knowledge and effects of atomic actions are described in an L-action theory
Σ = (K,Act,Eff). A program expression δ over Σ is obtained as in Definition
3 with the following restrictions for atomic actions and tests: we require t ∈ Act
and that ψ in a test ψ? is a Boolean combination of L-axioms. We call (Σ, δ)
an L-Golog program.

To describe properties of programs, CTL∗ temporal formulas over L-axioms
are used. Validity of a CTL∗ state formula over L-axioms in an L-Golog pro-
gram is then defined according to Definitions 5 and 6. For the verification prob-
lem we have obtained the following tight complexity bounds:

Theorem 5. Let (Σ, δ) be an L-Golog program and Ψ a CTL∗ temporal state
formula over L-axioms. Checking validity is

– 2ExpTime-complete if L ∈ {ALCO,ALCIO,ALCQO}, and
– co-N2ExpTime-complete if L = ALCQIO.

The upper bounds are obtained by using the abstraction technique described
in Section 4. For more details and for the proofs of the lower bounds we refer
to [50]. Note that in our formalism there is no direct interaction between the
TBox that is part of the initial KB K and the transition semantics of actions and
programs. It is possible that TBox axioms are violated in some program states,
which might seem not desirable because usually TBox axioms are assumed to be
global state constraints. However, the property that a global TBox is satisfied in
all program states can be expressed as a CTL∗ formula, and the corresponding
check is an instance of the verification problem. Different approaches with a
tighter integration of TBox axioms as state constraints and action semantics
have been investigated, for instance, in [5,36,3].

6 Further Results

The results summarized in the previous sections laid the foundation for exten-
sions in various directions.

Knowledge-based programs, which are suited for more realistic scenarios where
the agent possesses only incomplete information about its surroundings and has
to use sensing in order to acquire additional knowledge at run-time, were con-
sidered in [53,54]. As opposed to classical Golog, knowledge-based programs
[45,15] contain explicit references to the agent’s knowledge, thus enabling it to
choose its course of action based on what it knows and does not know. The
work introduces a new epistemic action formalism based on the basic Descrip-
tion Logic ALC, obtained by combining and extending earlier proposals for DL
action formalisms [5] and epistemic DLs [23]. It turned out that the correspond-
ing verification problem is in general again undecidable in the presence of pick
operators, even under severe restrictions on the knowledge base and actions. De-
cidability can however be obtained by syntactically limiting the domain of pick
operators to contain named objects only, yielding a 2ExpSpace upper bound.
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Actions with non-local effects were considered in [55], where two new classes
of action theories are introduced that generalize the previously discussed local-
effect ones. Instead of imposing any bound on the number of affected objects,
decidability of verification is obtained by restricting certain dependencies be-
tween fluents in the successor state axioms. This allows for a much wider range
of application domains, including classical examples such as the briefcase domain
[42] and exploding a bomb [35]: When a briefcase is moved, all (unboundedly
many, unmentioned) objects that are currently in it are being moved along, and
if a bomb explodes, everything in its vicinity is destroyed.

Decision-theoretic Golog (DTGolog) extends classical Golog by decision-
theoretic aspects in the form of stochastic actions and reward functions [8,48].
Here, a stochastic action refers to an operator that can have a limited number
of possible outcomes, each of which is a regular, deterministic action which an
associated probability. The program together with the action theory and re-
ward function thus essentially induce an infinite-state Markov Decision Process
(MDP), and the objective is to verify properties expressed in first-order vari-
ants of probabilistic temporal logics such as PCTL [28] or PRCTL [1]. Using
similar techniques and restrictions as discussed above, Claßen and Zarrieß [18]
showed that the infinite-state MDP can effectively be abstracted to a finite one,
which then can be fed into any state-of-the-art probabilistic model checker such
as PRISM [30] and STORM [22].

Probabilistic beliefs constitute a more involved notion of uncertainty. Instead of
just having stochastic actions affect the objective truth of world-state fluents
as above, an agent is now considered to have a certain probabilistic degree of
belief. For such a setting, Zarrieß [49] studied the complexity of the projection
problem, a subproblem of verification where one wants to determine whether
a formula (here: about the agent’s probabilistic beliefs) is true after execut-
ing a given sequence of (here: stochastic) actions. He proposed a formalization
where deterministic actions (the possible outcomes of stochastic ones) are once
again described similar to [5], and where initial beliefs as well as queries re-
fer to subjective probabilities applied to ABox facts and TBox statements for-
mulated in the DL ALCO, which can be seen as a member of the Prob-ALC
family of probabilistic DLs [39] and is a decidable fragment of Halpern’s Type
2 probabilistic first-order logic [27]. It turned out that the combination of in-
cluding both stochastic actions and probabilistic beliefs increases the complexity
from ExpTime-complete to 2ExpTime-complete, while the problem remains
ExpTime-complete when only deterministic actions are used.

Timed Golog is a variant where instead of employing a qualitative notion
of time, the more realistic assumption is made that actions may have a cer-
tain (discrete-time) duration. Consequently, verification is with respect to prop-
erties expressed in a metric temporal logic such as TCTL∗ [32]. Koopmann
and Zarrieß [29] studied the complexity of verification under these assumptions
over a DL representation of actions for various DLs in the ALC family as well
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as a lightweight DL. They were able to establish 2-ExpTime-completeness for
almost all variants, except for the case of full ALCQIO (ALC with qualified
number restrictions, inverse roles, and nominals), which yields co-N2ExpTime-
completeness. They also show that these tight complexity bounds apply for the
non-metric, untimed case (cf. Theorem 4), and the corresponding abstraction
techniques are indeed worst-case optimal.

A prototypical implementation of the methods from Sections 3 and 4 was pre-
sented in [14], with the motivation that most results so far on Golog verification
remained purely theoretical. In particular the very high worst-case complexities
mentioned above are widely considered intractable, and hence may appear dis-
couraging. On the other hand, experience from other areas (such as classical
planning and SAT solving) is that in practical cases, most instances are com-
paratively easy to solve, and only few exhaust the full theoretical complexity.
A prototype was hence implemented which uses a new Golog interpreter that
supports full first-order reasoning by means of an embedded theorem prover [47].
One major challenge was that regression as is used by the fixpoint method causes
a severe, exponential blow-up of formulas, and therefore – once again drawing
inspiration from symbolic propositional model checking – a representation based
on a first-order variant [46] of ordered binary decision diagrams [10] was used.
A subsequent experimental evaluation showed that the fixpoint method is often
preferable since it only explores parts of the state space that are relevant for the
query property, while constructing a complete, bisimilar abstraction (which can
be up to double-exponential in size) is often too expensive.

7 Conclusion

We presented an overview of our work on the temporal verification of Golog
programs, both from a (modal) Situation Calculus and a Description Logic per-
spective. The problem can be approached in two different ways, namely by means
of a Golog-specific fixpoint computation method based on characteristic pro-
gram graphs and regression-based reasoning, or by determining a finite abstrac-
tion and applying a classical model checker. Golog’s high expressiveness renders
the general verification problem highly undecidable, and so the main challenge
has been to identify restrictions on the input formalism that yield decidable, yet
non-trivial fragments.

Other groups of researchers have conducted work that complements ours.
To name but a few, Li and Liu [34] also present a sound, but incomplete ver-
ification method based on first-order theorem proving, however addressing the
(somewhat different) task of proving Hoare-style partial correctness of terminat-
ing Golog programs. De Giacomo et al. [20] study the class of theories that
have an infinite overall domain of objects, but where fluent extensions in each
situation are bounded, which also admits finite abstractions and thus renders
temporal verification decidable. Achieving decidable projection through a De-
scription Logic representation in the Situation Calculus is analyzed in depth by
Gu and Soutchanski [26].
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While through this work, we have gained a deeper understanding of the
problem and possible approaches to it, many avenues for future work remain.
Probably the most interesting, and also most challenging, are those that strive
to advance the current state of the art further towards realistic applications in
robotics (or cyber-physical systems in general), where representations of quan-
titative, dynamic, and probabilistic aspects are needed, and that, beyond what
was presented above, require e.g. notions of continuous change, noisy sensing,
and uncertain beliefs.
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5. Baader, F., Lutz, C., Miličić, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proceedings of the Twentieth Na-
tional Conference on Artificial Intelligence (AAAI 2005). pp. 572–577. AAAI Press
(2005)

6. Baader, F., Zarrieß, B.: Verification of Golog programs over description logic ac-
tions. In: Proceedings of the Ninth International Symposium on Frontiers of Com-
bining Systems (FroCoS 2013). Lecture Notes in Artificial Intelligence, vol. 8152.
Springer (2013)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

8. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI 2000). pp. 355–362. AAAI
Press (2000)

9. Brewka, G., Lakemeyer, G.: Hybrid reasoning for intelligent systems : A focus of
KR research in Germany. AI Magazine 39(4), 80–83 (2018)



24 J. Claßen et al.

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

11. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D.,
Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot.
Artificial Intelligence 114(1–2), 3–55 (1999)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
13. Claßen, J.: Planning and Verification in the Agent Language Golog. Ph.D.

thesis, Department of Computer Science, RWTH Aachen University (2013),
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2013/4809/

14. Claßen, J.: Symbolic verification of Golog programs with first-order BDDs. In: Pro-
ceedings of the Sixteenth International Conference on the Principles of Knowledge
Representation and Reasoning (KR 2018). pp. 524–529. AAAI Press (2018)

15. Claßen, J., Lakemeyer, G.: Foundations for knowledge-based programs using ES. In:
Proceedings of the Tenth International Conference on the Principles of Knowledge
Representation and Reasoning (KR 2006). pp. 318–328. AAAI Press (2006)

16. Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Pro-
ceedings of the Eleventh International Conference on the Principles of Knowledge
Representation and Reasoning (KR 2008). pp. 589–599. AAAI Press (2008)

17. Claßen, J., Liebenberg, M., Lakemeyer, G., Zarrieß, B.: Exploring the boundaries
of decidable verification of non-terminating Golog programs. In: Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2014). pp.
1012–1019. AAAI Press (2014)

18. Claßen, J., Zarrieß, B.: Decidable verification of decision-theoretic Golog. In: Pro-
ceedings of the Eleventh International Symposium on Frontiers of Combining Sys-
tems (FroCoS 2017). Lecture Notes in Computer Science, vol. 10483, pp. 227–243.
Springer (2017)

19. De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121(1–2),
109–169 (2000)

20. De Giacomo, G., Lespérance, Y., Patrizi, F., Sardiña, S.: Verifying ConGolog pro-
grams on bounded situation calculus theories. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI 2016). pp. 950–956. AAAI Press
(2016)

21. De Giacomo, G., Ternovska, E., Reiter, R.: Non-terminating processes in the sit-
uation calculus. In: Working Notes of “Robots, Softbots, Immobots: Theories of
Action, Planning and Control”, AAAI’97 Workshop (1997)

22. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A Storm is coming: A modern proba-
bilistic model checker. In: Proceedings of the Twentyninth International Conference
on Computer Aided Verification (CAV 2017). Lecture Notes in Computer Science,
vol. 10427, pp. 592–600. Springer (2017)

23. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic oper-
ator for description logics. Artificial Intelligence 100(1-2), 225–274 (1998)

24. Ferrein, A., Niemueller, T., Schiffer, S., Lakemeyer, G.: Lessons learnt from de-
veloping the embodied AI platform CAESAR for domestic service robotics. In:
Papers from the AAAI 2013 Spring Symposium on Designing Intelligent Robots:
Reintegrating AI II. Technical Report SS-13-04, AAAI Press (2013)
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