This is the authors’ accepted manuscript version of an article published in:

ClaBen, J., Zarrie}, B. (2017). Decidable Verification of Decision-
Theoretic Golog. In: Dixon, C., Finger, M. (eds) Frontiers of Com-
bining Systems. FroCoS 2017. Lecture Notes in Computer Science,
vol 10483. Springer, Cham.

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-66167-4_13.

Decidable Verification
of Decision-Theoretic Golog

Jens ClaBlen! and Benjamin Zarrief3?

! Knowledge-Based Systems Group, RWTH Aachen University, Germany
classen@kbsg.rwth-aachen.de
2 Theoretical Computer Science, TU Dresden, Germany
benjamin.zarriess@tu-dresden.de

Abstract. The GOLOG agent programming language is a powerful means
to express high-level behaviours in terms of programs over actions defined
in a Situation Calculus theory. Its variant DTGOLOG includes decision-
theoretic aspects in the form of stochastic (probabilistic) actions and
reward functions. In particular for physical systems such as robots, veri-
fying that a program satisfies certain desired temporal properties is often
crucial, but undecidable in general, the latter being due to the language’s
high expressiveness in terms of first-order quantification, range of action
effects, and program constructs. Recent results for classical GOLOG show
that by suitably restricting these aspects, the verification problem be-
comes decidable for a non-trivial fragment that retains a large degree of
expressiveness. In this paper, we lift these results to the decision-theoretic
case by providing an abstraction mechanism for reducing the infinite-
state Markov Decision Process induced by the DT GOLOG program to a
finite-state representation, which then can be fed into a state-of-the-art
probabilistic model checker.

1 Introduction

When it comes to the design and programming of an autonomous agent, the
GoLoG [12] family of action languages offers a powerful means to express high-
level behaviours in terms of complex programs whose basic building blocks
are the primitive actions described in a Situation Calculus [16] action theory.
GOLOG’s biggest advantage perhaps is the fact that a programmer can freely
combine imperative control structures with non-deterministic constructs, leaving
it to the system to resolve non-determinism in a suitable manner. Its extension
DTGOLOG [2,17] includes decision-theoretic aspects in the form of stochastic
(probabilistic) actions and reward functions, essentially expressing a form of
(infinite-state) Markov Decisions Process (MDP) [15].

In particular when GOLOG is used to control physical robots, it is often
crucial to verify a program against some specification of desired behaviour, for
example in order to ensure liveness and safety properties, typically expressed by
means of temporal formulas. Unfortunately, the general verification problem for
GOLOG is undecidable due to the language’s high expressivity in terms of first-
order quantification, range of action effects, and program constructs. For this

reason, there have recently been endeavours to identify restricted, but non-trivial
fragments of GOLOG where verification (and hence other reasoning tasks such as
projection) becomes decidable, while a great deal of expressiveness is retained. In
[20] we presented one such result for a class of action theories, called acyclic, that
allows for non-local effects, i.e. where actions may affect an unbounded number
of objects that are not explicitly mentioned as action parameters. Decidability of
verification is achieved by restricting dependencies between fluents in successor
state axioms, which allows for a wide range of applications that includes the
well-known briefcase domain [14].

So far, to the best of our knowledge, the verification of temporal properties of
decision-theoretic GOLOG programs has not received any attention, even though
in most practical applications one has to deal with uncertainty, e.g. in the form of
actions failing with a certain probability and not showing the desired effects. In
this paper, we lift the above mentioned decidability result on acyclic theories to
the decision-theoretic case by providing an abstraction mechanism for reducing
the infinite-state MDP induced by a DTGOLOG program to a finite-state rep-
resentation, which then can be fed into any state-of-the-art probabilistic model
checker such as PRISM [10] and STORM [4].

2 Preliminaries

2.1 The Logic &S

We use a fragment of the first-order action logic &S [11], a variant of the Situation
Calculus that uses modal operators instead of situation terms to express what
is true after a number of actions has occurred. Not only is the syntax of & in
our view more readable, but its special semantics also makes proofs for many
semantic properties simpler, while retaining much of the expressive power and
main benefits of the original Situation Calculus. In particular, this includes the
usage of Basic Action Theories (BATSs) [16] to encode dynamic domains.

As we aim at decidability, we further have to restrict ourselves to a decidable
fragment of FOL as base logic, as otherwise reasoning about theories not involv-
ing actions, programs and temporal properties would be undecidable already.
For this purpose we use C?, the two-variable fragment of FOL with equality and
counting, an expressive fragment that subsumes most description logics.

Syntax There are terms of sort object, number and action. Variables of sort
object are denoted by symbols x, vy, .. ., of sort number by p, r, and of sort action
by a. No is a countably infinite set of object constant symbols, N the count-
able set of rational numbers, and N4 a countably infinite set of action function
symbols with arguments of sort object. We denote the set of all ground terms
(also called standard names) of sort object, number and action by Np, Ny, and
N4, respectively.

Formulas are built using fluent predicate symbols (predicates that may vary
as the result of actions) with at most two arguments of sort object, and equality,

using the usual logical connectives, quantifiers, and counting quantifiers. In ad-
dition we have the two special fluents Prob(as, a,,p) (taking two actions as, ar,
and a number p as arguments), expressing that stochastic action as can have
outcome a, with probability p, and Reward(r) (taking a number r as argu-
ment), saying that the reward in the current situation is r. Furthermore, there
are two modalities for referring to future situations: O¢ says that ¢ holds after
any sequence of actions, and [t]¢ means that ¢ holds after executing action ¢.

A formula is called fluent formula if it contains no O, no [-], no Prob and
no Reward (i.e. such formulas talk about the current state of the world and
do not involve dynamic or decision-theoretic aspects). A C2-fluent formula is a
fluent formula that contains no terms of sort action and at most two variables.
A sentence or closed formula is a formula without free variables.

Semantics A situation is a finite sequence (history) of actions. Let Z := N}
be the set of all situations (including the empty sequence ()) and Pr the set
of all primitive formulas F(nq,...,nk), where F' is a regular k-ary fluent with
0 < k <2 and the n; are object standard names, together with all expressions
of form Prob(ty,ts,c1) and Reward(cz), where t1,t3 € Na and ¢1,c2 € Ny. A
world w then maps primitive formulas and situations to truth values:

w:PrpxZ—{0,1}.

The set of all worlds is denoted by W.

Definition 1 (Truth of Formulas). Given a world w € W and a closed for-
mula ¢, we define w =1 as w, () = 1, where for any z € Z:

w,z = F(ny,...,ng) iff wF(ny,...,ng),z] =1;
w,z E (n1 = ng) iff n1 and ny are identical;
w,z =1 Ag iff w,z =y and w, z = e
w,z B iff w, z

w,z EVr.¢ iff w,z |E ¢F for alln € Ny;

w,z | 35mr.¢ iff [{n € Ny |w,z | ¢} <m;
w,z | IE"x.¢ iff [{n € Np |w,z | ¢%} > m;
w,z = OV iff w,z-2" 1 forall 2’ € Z;

w,z =Y iff w,z-t E .

© 0 RS G o~

Above, N, refers to the set of all standard names of the same sort as . Moreover
¢+ denotes the result of simultaneously replacing all free occurrences of x in ¢
by n. Note that by rule 2, the unique names assumption for constants is part
of our semantics. We use the notation « and y for sequences of object variables
and v for a sequence of object terms. We understand V, 3, D, and = as the usual
abbreviations.

2.2 Action Theories

Definition 2 (Basic Action Theories). A C?-basic action theory (C?-BAT)
D = Dy UDpost is a set of axioms that describes the dynamics of a specific
application domain, where

1. Dy, the initial theory, is a finite set of C?-fluent sentences describing the
initial state of the world;

2. Dpost 15 a finite set of successor state axioms (SSAs), one for each fluent
relevant to the application domain, incorporating Reiter’s [16] solution to
the frame problem to encode action effects, of the form

Vaz.0(([aF(x)) =77 V (F(z) A7)

where the positive effect condition 'y;f and negative effect condition v, are

fluent formulas that are (possibly empty) disjunctions of formulas of the form

Hy.(a =A(W)ANdA gb’) such that

(a) 3y.(a = A(v) Ap A ¢') contains the free variables € and a and no other
free variables;

(b) A(v) is an action term and v contains y;

(c) ¢ is a fluent formula with no terms of sort action and the number of
variable symbols in it not among v or bound in ¢ is less or equal two;

(d) ¢' is a fluent formula with free variables among v, no action terms, and
at most two bound variables.

¢ 1s called effect descriptor and ¢’ context condition.

The restrictions 2a and 2b on SSAs are without loss of generality and describe
the usual syntactic form of SSAs. Intuitively, the effect descriptor ¢ defines a
set of (pairs of) objects that are added to or deleted from the relational flu-
ent F' when A(v) is executed. If free occurrences of variables in ¢ that appear
as arguments of A(v) are instantiated, condition 2c¢ ensures definability of the
(instantiated) effect descriptor in our base logic C2. In contrast to the effect
descriptor, the context condition ¢ only tells us whether A(v) has an effect on
F, but not which objects are affected. Condition 2d again ensures that after in-
stantiation of the action, the context condition is a sentence in C2. The variables
x mentioned in 2a may hence have free occurrences in ¢ but not in ¢'.

Note that for simplicity we do not include precondition axioms, again without
loss of generality: To ensure that action ¢ only gets executed when precondition ¢
holds, simply precede every occurrence of ¢ in the program expression (cf. Section
2.3) by a test for ¢.

For representing the decision-theoretic aspects, we assume that action func-
tion symbols are subdivided into two disjoint subsets, deterministic actions and
stochastic actions. We then associate every stochastic action with a probability
distribution over a finite number of possible outcomes in the form of deterministic
actions. Moreover, (state-based) rewards are represented by assigning numeric
values to situations:

Definition 3 (Decision-Theoretic BATs). A (C?-decision-theoretic action
theory (C?-DTBAT) DDT = DUD,rob UDrewara extends a BAT D over deter-
ministic actions by

1. Dyrop, an aziom of the form OProb(as,an,p) = ¢, where as and a, are
action variables, p is a number variable, and ¢ is a disjunction of formulas
of the form

dx. as = A(z) A \/an = A;(x;) Ap = ¢,

(3

where A is a stochastic action, the A; are deterministic actions defined in D,
the x; are contained in x, and the ¢; are rational constants with 0 < ¢; < 1
and Y, ¢; = 1. Furthermore, we assume that Prob is defined to be functional
in the sense that for any ground action terms ts and t,, there is at most one
¢ such that Prob(ts,ty,c).

2. Dreward, an aziom of the form OReward(r) = 1, where ¢ is a fluent formula
with free variable r, no terms of sort action and at most two bound variables.
Reward is assumed to be partially functional, i.e. in any situation there is
at most one r such that Reward(r) holds.

Example 1. Consider a warehouse domain with shelves holding boxes containing
items. The fluent Broken(x) denotes that a box or item x is currently broken,
On(z,y) says that box or item x is currently on shelf y, and Contains(z,y) is
true for a box x containing an item y.

The agent is a robot that can move a box v from shelf s to shelf s’ using
the action Move(v, s, s"). We also have actions with undesired effects: Drop(v, s)
stands for dropping a box v from shelf s to the ground, causing all fragile objects
in it to break if there is no bubble wrap in it. Finally, Repair(s) is an action by
means of which the robot can repair a box or an item that is not fragile.

Figure 2 exemplarily shows the effect conditions for Broken(x) and On(x,y).
Effect descriptors are underlined with a solid line, context conditions with a
dashed line. If for example the agent were to drop the boz in an initial situation
incompletely described by the axioms in Figure 1, everything in it will break if
the box contains no bubble wrap, i.e. the BAT entails

-3z (Contains(box, x) A Bubble Wrap(x))
> [Drop(box)](Vy.Contains(box,y) D Broken(y)).

MowveS(v,s,s') is a stochastic action that has the desired effect in 90% of the
cases, but there is a 10% chance to drop v from shelf s; having the unbroken

On(boz, s1),

Vz3=sly. On(z,y),
Vz.(BubbleWrap(x) D —Fragile(x)),
Contains(bozx, vase),
Vz.(Contains(box, x) D Fragile(z))
vy3<tz. Contains(zx,y),

Fig. 1. Example initial theory

Vrokon = 30, s.(a = Drop(v,s) A On(v,s) A Contains(v, z) A Fragile(z) A

Yproken = 35.(a = Repair(s) A s = x A\ = Fragile(z));

Vo i= T, s, s'.(a = Move(v,s,s") Ny =s" A (Contains(v,z) Va = v));

Yon = Fv,s,5".(a = Move(v,s,s') Ny =s A (Contains(v,x) V& =v))V

Jv,s.(a = Drop(v,s) ANy = s A (v=aV Contains(v, z)))

Fig. 2. Example effect conditions

vase on shelf s; gives a reward of 5, while on ss it gives a reward of 10:

OProb(as, an,p) = Jv,s,s".as = MoveS(v,s,5") A
(an = Move(v,s,s") Ap=0.9V
an = Drop(v,s) A\p = 0.1)
OReward(r) =
(On(vase, s1) A ~Broken(vase) A1 =

On(vase, sy) A ~Broken(vase) A = 10)

2.3 DTGolog and the Verification Problem

In a GOLOG program over ground actions we combine actions, whose effects are
defined in a C2-BAT, and tests, using a set of programming constructs to define
a complex action.

Definition 4 (Programs). A program expression § is built according to the
following grammar:

du=t]Y?]d;0]60] 6"

A program expression can thus be a (deterministic or stochastic) ground ac-
tion term t, a test ¥? where v is a C?-fluent sentence, or constructed from
subprograms by means of sequence 4;d, non-deterministic choice 6|d, and non-
deterministic iteration 6*. Furthermore, if statements and while loops can be
defined as abbreviations in terms of these constructs:

if ¢ then 6, else 6, endIf " [67;61] | [~67;05)

while ¢ do § endWhile < [¢7;6]*; ~¢?

A GoroG program G = (D, §) consists of a C?>-BAT D = Dy U Dpos; and
a program expression § where all fluents occurring in D and § have an SSA in
Dpost-

To handle termination and failure of a program we use two 0-ary fluents
Final and Fail and two 0-ary action functions € and § and include the SSAs
Ofa]Final = a = € V Final and Ofa]Fail = a = fV Fail in Dpos. Furthermore,
we require that ~Final € Dy and —Fail € Dy, and that the fluents Final, Fail
and actions € and §f do not occur in 6.

Following [3] we define the transition semantics of programs meta-theoretically.
First, consider program expressions that only contain deterministic actions. A
configuration (z,p) consists of a situation z € Z and a program expression p,
where z represents the actions that have already been performed, while p is
the program that remains to be executed. Execution of a program in a world
w € W yields a transition relation —» among configurations defined inductively
over program expressions, given by the smallest set that satisfies:

A{zt) = (21, ()

c{2,01302) B (21,73 6), if (2,61) < (z-t,7);

. (z,01;02) ﬂ) (z-t,0"), if (2,61) € Fin(w) and (z,85) < (2 -t,6');
Az, 51|(52> (z-1,0"), if (2,61) 2 (2-t,6") or (2,00) = (z-t,8);
{2, 0% B (2ot y;0%), if (2,0) D (2 t,7).

O W N

The set of final configurations Fin(w) w.r.t. a world w is defined similarly as the
smallest set such that:

n w) if w, » = s

2. {z, 51,62> € Fin(w) if (z,601) € Fin(w) and (z, d2) € Fin(w);
3. (z,01|92) € Fin(w) if (z,01) € Fin(w) or (z,d2) € Fin(w);
4. (z,0%) € Fin(w).

The set of failing configurations w.r.t. a world w is given by
Fail(w) := {(z,0) | (2,0) ¢ Fin(w), there is no (z-t,d") s.t. (2,6) > (z-t,6")}.

We now turn to the decision-theoretic case. A DTGOLOG program G = (DDT, §)
consists of a C2-DTBAT DDT = DU Dprob U Drewarda and a program expression

d that only contains stochastic actions,? and where all fluents occurring in DDT
and 0 have an SSA in Dpost. Given a world w € W with w |= DDT, execution
of § in w induces an infinite-state MDP w.r.t. w given by MY = (S,s°, A/ P, R),
where

— the (infinite) set of states S is given by Reach(w, d4et), which denotes the set
of configurations reachable from ((), d4et) via —, where dger is the program
obtained by replacing every stochastic action A(v) in § by the expression
(A1(v1)|- - |Ag(vg)) such that the A;(v;) are all deterministic actions for
which

w, =z ': PTOb(A(SC),AZ(SCl),p):,

— the initial state is ¥ = ({), Sget);
— the (finite) set of actions A are all (stochastic) ground action terms occurring
in 0;
— the transition function P : S x A x S — R is such that
P, w2z Pmb(t t',p)
and (z,p) = (z-t/, >

P((z, 0t (-t 0)) = {1, (2,p) € Fin(uw), t = ' =
, {z,p) € Fail(w), t =
0, otherwise

€

p =
=p =f

—_

— the reward function R : S — R is given by

r, w,z = Reward(r)
0, otherwise

R((z,p)) = {

In addition, final and failing configurations are absorbing states, i.e. if s is reached
by €, then P(s,¢,s) = 1, and if s is reached by f, then P(s, f,s) = 1.

The non-determinism on the agent’s side is resolved by means of a policy o,
which is a mapping ¢ : S — A such that P(s,o(s),s’) > 0 for some s’ € S. An
infinite path m = sy = s =2 - is called a o-path if o(sj) = aj41 for all j > 0.
The j-th state s; of any such path is denoted by w[j]. The set of all o-paths
starting in s is Paths” (s, M¥’).

Every policy o induces a probability space PrJ on the sets of infinite paths
starting in s, using the cylinder set construction [8]: For any finite path prefix
Tfin = S0 g 2. Sn, we define the probability measure

Prg, n = P(so0,a1,51) - P(s1,a2,52) - ... - P(sp—1,an,5n)-
This extends to a unique measure Pry.

3 Note that we can always simulate a deterministic action by a stochastic one that
has only one outcome.

Definition 5 (Temporal Properties of Programs). To express temporal
properties of probabilistic systems represented by DTGOLOG programs, we use
a probabilistic variant of CTL called PRCTL [1], which extends PCTL [7]
with rewards. However, in place of atomic propositions, we allow for C?-fluent
sentences :

Pu=9 |0 |PND|P[V] | R, (1)
V=X | (D UD) | (P USF @) (2)

Above, I C [0,1] and J are intervals with rational bounds. We call formulas
according to (1) state formulas, and formulas according to (2) path formulas.
Intuitively, Pr[¥] expresses that the probability of the set of paths satisfying ¥
lies in the interval I, while R j[®P] says that the expected reward cumulated before
reaching a state that satisfies @ is in J. Rather than providing intervals explicitly,
we often use abbreviations such as P>o.9[¥] to denote P9 1)[¥], P=1[¥] for
P[l,l] [W], or P>() [W} fOT' P]O,l] [W] .

(P4 U§k¢2) 1s the step-bounded version of the until operator, expressing that
Do will hold within at most k steps, where @1 holds in all states before. We use
the usual abbreviations F® (eventually @) for (true UP) and GP (globally @)
for =F=®, as well as their corresponding step-bounded variants.

Let @ be a temporal state formula, MY the infinite-state MDP of a program
G = (D,d) w.r.t. a world w with w = DDT, and s = (z,p) € S. Truth of & in
M¥.s, denoted by M¥,s |= @ is defined as follows:

MY.s =9 iff w,z =9;

MY, s = =@ iff MY, s b= &;

- MSU,S ':Gpl /\@2 ZﬁM?,S ':qjl and MZ“SU,S ’:Ql,

MY s |= P[] iff for all policies o, Prl(¥) € I;

— MY, s = Ry;[D] iff for all policies o, ExpRew (P) € J,

where
Pri (@) = Pr{({n € Paths” (s, My) | My, m = ¥})

and EzpRew (P) is the expectation (wrt. measure Prl) of the random variable
Xg(7) : Paths?(s,M¥) — Rsq such that for any path m = sy > s; -2 -+,

07 Mg), So ':]
Xg(m) = o0, My,s; P VieN

2?1:18{] IMESEPITIR(s), otherwise
Let ¥ be a temporal path formula, My ands = (z, p) as above, and w € Paths’ (s, M¥)
for some . Truth of ¥ in MY, m, denoted by MY, =W, is defined as follows:

— MY, 1 = X® iff MY, w[1] |= @;
— MY, (@) Udy) iff 3i > 0: MY, 7[i] = &y
and V5,0 < j < i: M, 1lj] = &1

— MY, 71 | (D) USF @) iff 3ik >0 > 0: MY, 7[i] = &y
and V4,0 < j < i: MY 7[j] = &;.

Definition 6 (Verification Problem). A temporal state formula @ is valid
in a program G = (DDT,6) iff for all worlds w € W with w |= DDT it holds
that MY, s° |= &.

Ezxample 2. Assume that due to the fact that the action may fail, the agent de-
cides to simply execute the MoveS (boz, s1, s2) action repeatedly until the desired
situation is reached where the unbroken vase is on shelf ss:

§ = while —(On(vase, s3) A = Broken(vase)) do MoveS(boz, s1,s2) endWhile

Temporal properties one might want to verify for this program expression could
be whether it is very likely that this can be achieved within exactly one, at least
k, or an arbitrary number of steps:

P>o.95[X (On(vase s2) A —Broken(vase))] (3)
Po.os[FS (On(vase s2) A = Broken(vase))] (4)
P>0.95[F(On(vase, s3) A ~Broken(vase))] (5)

3 Decidability of Verification

We first note that in general:
Theorem 1. The verification problem for DTGOLOG is undecidable.

Proof (sketch). In [20] it is shown that given a two-counter machine M, a GOLOG
program and BAT can be constructed where EF Halt is valid iff M halts, which
is undecidable. Since regular GOLOG programs are a subset of DTGOLOG, and
since the corresponding temporal property can be expressed as P)o1[FHalt] in
PRCTL, we also get undecidability in the decision-theoretic case.

3.1 Fluent Dependencies and Acyclic Theories

One source of undecidability lies in cyclic dependencies between fluents in the
effect descriptors of SSAs.

Definition 7 (Fluent Dependencies). The fluent dependency graph Gp for
a C?-BAT D consists of a set of nodes, one for each fluent in D. There is a
dzrected edge (F,F') from fluent F to fluent F' iff there is a disjunct 3y.(a =

YA DA (b’) m 7} or v such that F' occurs in the effect descriptor ¢. We
call D acyclic iff Gp is acyclic. The fluent depth of an acyclic action theory D,
denoted by fd(D), is the length of the longest path in Gp. The fluent depth of F
w.r.t. D, fdp(F), is the length of the longest path in Gp starting in F.

While the BAT used in the construction for the undecidability proof has a cyclic
dependency graph, the one for Example 1 is acyclic (with fluent depth 2), as
shown in Figure 3. Note that only effect descriptors are relevant. Important
special cases of acyclic action theories are the local-effect ones [18] (corresponding
to fluent depth 0) and the context-free [13] (fluent depth 1).

Broken

N

Contains «——— On Fragile

Fig. 3. Example fluent dependencies

3.2 Decidable Verification with Acyclic Theories

Let us now restrict our attention to programs over ground actions with an acyclic
C2-DTBAT DDT. Let A denote the finite set of ground deterministic actions
(including € and f) occurring in dget. The goal is to construct a finite proposi-
tional abstraction of the infinite-state MDP MY with w |= DDT. Following the
construction for GOLOG programs presented in [20] and elaborated in [19], the
essential part is a compact representation of effects from executing a sequence
of such ground actions in a given world satisfying the BAT.

First we simplify SSAs as follows. If F'(x) is a fluent and ¢ € A, the grounding
of the SSA of F' w.r.t. t is of the form

Dl F(2) = (v§)" V F(@) A (7))

The instantiated positive and negative effect conditions (y#); and (v), then
are each equivalent to a disjunction

O ANV v T A gl

for some n > 0, where the ¢ (effect descriptors) are C2-fluent formulas with
x as their only free variables, and the ¢$°" (context conditions) are C?-fluent
sentences. We often view (7}): and (’y;)? as sets and write (¢S, ¢on) € (7})?
to express that the corresponding disjunct is present. An effect function then
represents the effects of a ground action:

Definition 8 (Effects). Let F(x) be a fluent and ¢ a C?-fluent formula with
free variables x, where x is empty or x = x or x = (x,y). We call the expression
(F*,¢) a positive effect on F, and the expression (F~,¢) a negative effect on
F. We use the notation <Fi, @) for an effect if we do not explicitly distinguish
between a positive or a negative effect on F. Let D be a C*-BAT, w a world with
wED, z€ Z andt € A. The effects of executing ¢ in (w, z) are defined as:

Ep(w, z,t) ==
{(F*,05) | 3(¢", ¢°") € (), s b w,2 = ™"} U
{<F—7¢eff> | 3(¢efF,¢con) c (71;)? s t w, 2 ': (bcon}'

Intuitively, if (F+,¢) € Ep(w, 2z,t) and c is an instance of ¢ before executing ¢
in w, z, then F(c) will be true after the execution (similar for negative effects).

To accumulate effects of consecutively executed actions, we define a regression
operator applied to a C?-fluent formula given a set of effects. Without loss of
generality we assume that only variable symbols x and y occur.

Definition 9 (Regression). Let E be a set of effects and ¢ a C%-fluent for-
mula. The regression of ¢ through E, denoted by R[E, ¢|, is a C?-fluent formula
obtained from ¢ by replacing each occurrence of a fluent F'(v) in ¢ by the formula

Foyn N\ —etv \/ of

(F~,¢)€E (Ft,¢)€E

By appropriately renaming variables in the effect descriptors ¢ it can be ensured
that RIE, ¢] is again a C?-fluent sentence.

The result of first executing effects Ey and afterwards E; is a new set of effects
Eo > E; given by:

{(FE,R[Eo,¢)) | (F£,0) € E1} U

{(Fr.(en N\ ~RE.¢)) | (FF9) €E} U {(F7,¢) € Eo}.
(F~,¢")eE

It can be shown that for any C?-fluent sentence ¢,
R[Eo, R[E1, ¢]] = R[Eo > Ey, ¢].

Let w be a world with w | D. To accumulate the effects of a sequence z =
tity---t, € A* of deterministic actions into a single set, let z[i] denote the
subsequence of the first ¢ < n elements of z. Then we set

Ei:=&p(w,(),t1)
E;:=E,_1>&p(w,z[i —1],t;) fori=2,...,n

and say that E,, is generated by executing tits - --t, in w. Then, for the effects
E. generated by z in w and a C?-fluent sentence 1, it holds that

w, z = ¢ iff w, () = R[E:, ¢

For a given DTGOLOG program G = (DDT,d) with an acyclic BAT D and
finitely many deterministic ground actions A occurring in dqer we show that
there are only finitely many possible effects that can be generated by action
sequences from A. We observe that for an effect (FE, ©) on fluent F' with depth
fdp(F) = i all fluents occurring in ¢ have a depth that is strictly smaller than
i. Thus, for regressing the effect descriptor ¢ only effects on fluents with depth
strictly smaller than i are relevant. Using this argument we can define the set
of all relevant effects as follows: For a fluent F' the set of all positive effect
descriptors for F' are given by

eff { (F) := {0 | (¢, ¢") € (77); for some t € A},

and analogous for the negative effect descriptors eff 4 (F'). For an acyclic BAT D
and finite set of ground actions A the set of all relevant effects on all fluents with
depth < j with 5 = 0,...,fd(D) is denoted by Q‘SJ.D’A and is given in Figure 4.
We define ¢PA := ¢P:4 with fd(D) = n. For a given fluent F with fdp(F) = 0
it holds that the effects on F' can be described without referring to any other
fluent. Consequently, all effects on F' generated by a ground action sequence
from A must be contained in GOD’A. For fluents F' with fdp(F) =i and i > 0
the fluents in the effect descriptors may also be subject to changes but have a
depth strictly smaller than . To obtain all relevant effects on F' it is therefore
sufficient to consider the effects in G?_’f.

€7 = {(F7,) | fdp(F) = 0, € eff 4 (F)} U
{(FFon J\ ~¢) | fdp(F) =0, € eff 4 (F), X C eff 1 (F)};

ep'eX
D,A
e =P U ((F RIE.g]) | fdp(F) = i.p € eff3(F), E € 271} U

F+2) | fdp(F) =i, ¢ € eff;(F),E € 2521 | X C eff3(F) x 25121
A A

with Z:= (RE¢| A /\ -RIE,¢)

(p.E)EX

Fig. 4. Sets of all relevant effects with 1 <4 < fd(D)

Lemma 1. Let D and A be as above, z € A*, w = D and E, the effects gen-
erated by executing z in w. For each (F¥,p) € E, there exists (F¥, ') € €PA
with ¢ = ¢'.

Using the finite representation of action effects we can construct a finite abstrac-
tion of the infinite-state MDP induced by a program with a C2-DTBAT and an
acyclic D. First, we identify a finite set of relevant C?-fluent sentences called
context of a program, denoted by C(G). It consists of

— all sentences in the initial theory,

— all context conditions in the instantiated SSAs,

— all instantiations] of the right-hand side of axiom Diewara for all occurring
numeric constants c,

— all C?-fluent subformulas in the temporal property, and

— all tests in the program.

Furthermore, the context is closed under negation.

Central for the abstraction is the notion of a type of a world, representing an
equivalence class over W. Intuitively, a type says which of the context axioms
are satisfied initially and in all relevant future situations of that world.

Definition 10 (Types). Let G = (DDT,d) be a DTGOLOG program with an
acyclic BAT D = Dy U Dyosr w.r.t. a finite set of ground actions A (including €
and §). Furthermore, let C(G) be the context of G and EPA the set of all relevant
effects. The set of all type elements is given by

TE(G) := {(v,E) | ¥ € C(G),E C €PA}.
A type w.r.t. G is a set T C TE(G) that satisfies:

1. For all vy € C(G) and all E C ¢PA either (¢,E) € 7 or (—),E) € 7.
2. There exists a world w € W such that

w ': DO U {R[va} ‘ (1/)7 E) € T}'

The set of all types w.r.t. G is denoted by Types(G). The type of a world w € W
w.r.t. G is given by

type(w) := {(4, E) € TE(G) | w = R[E,]}

The abstraction of a world state consisting of a world w € W with w = DDT
and an action sequence z € A* is then given by type(w) and the set of effects
E. C ¢PA generated by executing z in w. Furthermore, the program only ad-
mits finitely many control states. Here we use a representation similar to the
characteristic program graphs from [3] where nodes are the reachable subpro-
grams Sub(J), each of which is associated with a termination condition Fin(d"),

t
and where an edge §; ﬂ> 0o represents a transition from &1 to do via action ¢
if test condition ¥ holds. Moreover, failure conditions are given by

Fail(d') := = (Fin(s) v \/ ®).

S5 t/_w>5//

The abstract, finite MDP for a type 7 can then be constructed using the Carte-
sian product of effect sets and subprograms as states, the same actions as
in the original MDP, and the context formulas as labels. Formally, M7, =
<Sﬁn, S?in, Atin, Pin, Réin, Lﬁn> consists of

the set of states Sgn, = 9€” 7 o Sub(Odet);
the initial state s, = (0, dget);

— the set of actions Agp, = A;

— the transition function Pg, such that

¢, Dprob = Prob(t,t',c),

6 Y 5y, (B e,

Eo=Ei > SD(T7 E17t/)
1, (Fin(51),E1)ET, t=t =0y =c¢
1, (Fall(él),El) €T, t=t = 52 = f

0, otherwise

Ptin((E1,01),t, (E2,62)) =

and all (E,¢) as well as all (F,f) are absorbing states;

D1 | Py | D<o | P<s3 | Po
with bubble wrap false|false| true | true | true

without bubble wrap|false|false|false|false|false

Table 1. Verification Results for Example Properties

— the reward function Rg, such that Rgn((E1,d1)) = c iff (¢%,E1) € 75
— and the labeling function Lg,((E1, 1)) = {¢ € C(G) | (v, E1) € T}.

We can thus regard the finitely many context formulas as atomic propositions,
and hence apply propositional probabilistic model checking. The finitely many
world types can be computed using a decidable consistency check in C?, so this
yields a decision procedure for the verification problem:

Theorem 2. Let G = (DDT,5) be a DTGOLOG program with an acyclic C?-
BAT and & a temporal state formula. It is decidable to verify whether @ is valid
m G.

Ezample 3. In our running example we obtain two types, one for the case that
the box contains bubble wrap and one where it does not. This is due to the fact
that our initial theory (Fig. 1) does not say anything about the truth of the
context condition ~Jy. Contains(bozx,y) A Bubble Wrap(y) for the Drop action in
,Ygroken (Flg 2)

The corresponding abstract MDPs are depicted in Figures 5(a) and 5(b),
respectively, where m stands for the ground action MoveS(boz, s1, s2). That is
to say when there is bubble wrap, a successful attempt of moving the box leads
to state sy, from where only successful termination of the program is possible,
represented by entering absorbing state s3. Should the box be dropped, state s is
entered, and m may be retried indefinitely until it succeeds. On the other hand,
if the box does not contain any bubble wrap, the agent only has one attempt.
Should it fail, absorbing state s, is reached, representing program failure.

We can now feed these finite MDPs into a probabilistic model checker such
as STORM [4] in order to verify (the propositionalized versions of) the example
properties. Table 1 shows the corresponding results, where @, stands for formula
(3), @<y, for (4) with k € {1,2,3}, and @ for (5). None of the properties holds in
both types, i.e. none is valid. We can see that in order to obtain a 95% certainty
that the unbroken vase ends up on shelf s, we need to allow for at least two
move attempts (hence bubble wrap is required). Intuitively, this is because the
first one only has a 90% chance to succeed, but with two attempts we already
get 0.9 +0.1-0.9 = 99% success probability, 99.9% with three, and so on. The
desired situation is thus reached eventually “almost surely”, meaning with a
100% probability.

OanOBL O OB

& ot
0.1 0.1 @L’f .

(a) with bubble wrap (b) without bubble wrap

Fig. 5. Example Abstract MDPs

4 Conclusion

In this paper we lifted recent results on the decidability of verification of temporal
properties of classical GOLOG programs to the decision-theoretic case. The class
of acyclic theories is very expressive in the sense that it subsumes many of the
popular classes, including the context-free and local-effect ones. Our result not
only enables us to employ recent advances in probabilistic model checking [6,9,
4] for the verification of DTGOLOG agents, variants of which have been used
e.g. for controlling soccer robots [5]. Our abstraction, which can be performed
as a preprocessing step, also opens the application range of methods normally
working on finite MDPs to a large class of infinite-state problems.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelligent Sys-
tems, project Al.

References

1. Andova, S., Hermanns, H., Katoen, J.: Discrete-time rewards model-checked. In:
Larsen, K.G., Niebert, P. (eds.) Proceedings of the First International Workshop
on Formal Modeling and Analysis of Timed Systems (FORMATS 2003). Lecture
Notes in Computer Science, vol. 2791, pp. 88-104. Springer (2003)

2. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Kautz, H., Porter, B. (eds.) Pro-
ceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI
2000). pp. 355-362. AAAT Press (2000)

3. Claen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In:
Brewka, G., Lang, J. (eds.) Proceedings of the Eleventh International Confer-
ence on the Principles of Knowledge Representation and Reasoning (KR 2008).
pp- 589-599. AAAT Press (2008)

4. Dehnert, C., Junges, S., Katoen, J.P.; Volk, M.: A Storm is coming: A modern
probabilistic model checker. In: Kuncak, V., Majumdar, R. (eds.) Proceedings of
the Twentyninth International Conference on Computer Aided Verification (CAV
2017). Springer (2017)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains.

Robotics and Autonomous Systems (2008)

Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) Formal
Methods for Eternal Networked Software Systems - Eleventh International School
on Formal Methods for the Design of Computer, Communication and Software
Systems (SFM 2011). Lecture Notes in Computer Science, vol. 6659, pp. 53-113.
Springer (2011)

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512-535 (1994)

Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains, Graduate
Texts in Mathematics, vol. 40. Springer (1976)

Kwiatkowska, M., Parker, D.: Advances in probabilistic model checking. In: Nip-
kow, T., Grumberg, O., Hauptmann, B. (eds.) Software Safety and Security - Tools
for Analysis and Verification, NATO Science for Peace and Security Series - D: In-
formation and Communication Security, vol. 33, pp. 126-151. IOS Press (2012)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of
the Twentythird International Conference on Computer Aided Verification (CAV
2011). pp. 585-591. Springer (2011)

Lakemeyer, G., Levesque, H.J.: A semantic characterization of a useful fragment
of the situation calculus with knowledge. Artificial Intelligence 175(1), 142-164
(2010)

Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31(1—
3), 59-83 (1997)

Lin, F., Reiter, R.: How to progress a database. Artificial Intelligence 92(1-2),
131-167 (1997)

Pednault, E.P.D.: Synthesizing plans that contain actions with context-dependent
effects. Computational Intelligence 4, 356-372 (1988)

Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic program-
ming. John Wiley & Sons (1994)

Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

Soutchanski, M.: An on-line decision-theoretic Golog interpreter. In: Nebel, B.
(ed.) Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAT 2001). pp. 19-26. Morgan Kaufmann Publishers Inc. (2001)
Vassos, S., Lakemeyer, G., Levesque, H.J.: First-order strong progression for local-
effect basic action theories. In: Brewka, G., Lang, J. (eds.) Proceedings of the
Eleventh International Conference on the Principles of Knowledge Representation
and Reasoning (KR 2008). pp. 662-672. AAATI Press (2008)

Zarrief3, B., Claflen, J.: Decidable verification of Golog programs over non-local
effect actions. LTCS-Report 15-19, Chair of Automata Theory, TU Dresden, Dres-
den, Germany (2015)

Zarrief, B., Clalen, J.: Decidable verification of Golog programs over non-local
effect actions. In: Schuurmans, D., Wellman, M. (eds.) Proceedings of the Thirtieth
AAAT Conference on Artificial Intelligence (AAAI 2016). pp. 1109-1115. AAAT
Press (2016)

