
ar
X

iv
:2

41
0.

00
72

6v
1

 [
cs

.A
I]

 1
 O

ct
 2

02
4

LTLf Synthesis on First-Order Action Theories

Till Hofmann1, Jens Claßen2

1RWTH Aachen University
2Roskilde University

till.hofmann@cs.rwth-aachen.de, classen@ruc.dk

Abstract

Golog is an expressive high-level agent language that in-
cludes nondeterministic operators which allow to leave some
of the decisions to be made only at execution time. This so-
called program realization is typically implemented by means
of search, or in an incremental online fashion. In this paper,
we consider the more realistic case where parts of the non-
determinism are under the control of the environment. Pro-
gram realization then becomes a synthesis problem, where
a successful realization executes the program and satisfies
the temporal goal for all possible environment actions. We
consider Golog programs in combination with an expressive
class of first-order action theories that allow for an unbounded
number of objects and non-local effects, together with a tem-
poral goal specified in a first-order extension of LTLf. We
solve the synthesis problem by constructing a game arena that
captures all possible executions of the program while track-
ing the satisfaction of the temporal goal and then solving the
resulting two-player game. We evaluate the approach in two
domains, showing the general feasibility of the approach.

1 Introduction

Golog (Levesque et al. 1997) is a popular agent program-
ming language based on the situation calculus (McCarthy
and Hayes 1969; Reiter 2001a), a first-order logic formalism
for reasoning about change. It allows for complex agent be-
havior with nondeterministic branching, iteration, and con-
currency (De Giacomo, Lespérance, and Levesque 2000)
and hence provides a middle ground between classical plan-
ning and pure programming. Golog programs may be in-
terpreted in an offline fashion by means of search, or on-
line (De Giacomo et al. 2009). However, it is typically as-
sumed that the agent is in complete control, even if it only
has incomplete knowledge (Reiter 2001b; Claßen and Neuss
2016) or its actions are stochastic (Boutilier et al. 2000).
Nondeterminism in the program is implicitly assumed to be
angelic, i.e., the agent may choose any outcome. Recently,
the situation calculus has been extended with nondetermin-
istic actions (De Giacomo and Lespérance 2021; Claßen and
Delgrande 2021) similar to FOND planning, where instead
the environment chooses the outcome. However, this still as-
sumes that agent and environment act in turns. In many sce-
narios, agent and environment may act concurrently, e.g., in
multi-agent systems or in the presence of humans. Hence,
we propose an alternative formulation by partitioning the

actions into agent and environment actions where agent and
environment may act in arbitrary order, similar to supervi-
sory control (Ramadge and Wonham 1989).

In this setting, program realization becomes a synthesis
task. Given a Golog program and a temporal goal, the goal
is to synthesize a policy that executes the program while
satisfying the temporal goal, independent of and reacting
to all possible environment behaviors. In this paper, we fo-
cus on the decidable fragment of Golog with acyclic basic
action theories restricted to C2 (Zarrieß and Claßen 2016)
and temporal goals given as LTLf formulas, a restriction of
Linear Temporal Logic (LTL) to finite traces (De Giacomo
and Vardi 2015). We provide a decidable approach for this
problem by constructing a finite game arena that captures
all possible program executions while tracking the satisfac-
tion of the temporal specification, and then applying a game-
theoretic approach to synthesize a policy. Exploiting an en-
coding of LTLf formulas that interprets temporal formulas as
propositional atoms (Li et al. 2020), the construction works
on-the-fly and avoids building irrelevant parts.

The remainder of this paper is structured as follows. After
discussing related work in Section 2, we summarize Golog
and introduce LTLf in the context of Golog programs in Sec-
tion 3. We describe the synthesis approach in Section 4 and
evaluate it in Section 5, before concluding in Section 6.

2 Related Work

Verification of Golog programs has been studied in vari-
ous contexts. Initially, verification efforts relied on man-
ual proofs (De Giacomo, Ternovska, and Reiter 1997; Liu
2002; Shapiro, Lespérance, and Levesque 2002). Claßen and
Lakemeyer (2008) describe a (possibly not terminating) sys-
tem that is capable of automatically verifying properties of
non-terminating Golog programs. Subsequent research iden-
tified decidable fragments of Golog based on C2, the decid-
able two-variable fragment of first-order logic with count-
ing (Grädel, Otto, and Rosen 1997). Verification of Golog
programs with context-free or local-effect basic action theo-
ries (BATs) in C2 and with pick operators restricted to finite
domains is decidable for properties in CTL (Claßen et al.
2014), LTL (Zarrieß and Claßen 2014a), and CTL* (Zarrieß
and Claßen 2014b). Beyond local-effect BATs, verification
remains decidable if the BAT is acyclic, i.e., there is no
cyclic dependency between fluents in the effect descriptors,

http://arxiv.org/abs/2410.00726v1

or flat, i.e., effect descriptors are quantifier-free (Zarrieß and
Claßen 2016). Bounded theories, where the number of ob-
jects described by any situation is bounded, also results in
decidable verification (De Giacomo, Lespérance, and Patrizi
2016). All these approaches rely on a finite abstraction of
the infinite program configuration space, which yields decid-
ability, and hence could be used as basis for our approach.

Related to verification is synthesis of temporal properties,
which can be described as two-player games between the
system and the environment (Abadi, Lamport, and Wolper
1989; Pnueli and Rosner 1989). Given a specification, e.g.,
in LTL, and a partition of the symbols into controllable
and uncontrollable ones, the players alternate selecting a
subset of their symbols. LTL has also been used to de-
scribe temporally extended goals for planning (Bacchus and
Kabanza 1998; De Giacomo and Vardi 2000; Geffner and
Bonet 2013), possibly resulting in infinite plans (Patrizi et al.
2011). LTL can also be used to specify conformant plan-
ning problems with temporally extended goals (Calvanese,
De Giacomo, and Vardi 2002) and synthesis is related to
FOND planning (Camacho et al. 2017, 2018; De Giacomo
and Rubin 2018) as a nondeterministic effect can be seen as
an environment action. Moreover, there has been a particu-
lar interest in LTLf (De Giacomo and Vardi 2013), where the
synthesis problem can be solved by transforming the LTLf

specification into a finite automaton (De Giacomo and Vardi
2015). Like LTL, LTLf synthesis is 2EXPTIME-complete,
although LTLf synthesis tools usually perform better. Re-
cently, several methods have been proposed to improve the
performance of LTLf synthesis, e.g., based on BDDs (Zhu
et al. 2017) and on-the-fly forward search (Xiao et al. 2021;
De Giacomo et al. 2022; Favorito 2023).

3 Preliminaries

We describe the logic ES and an ES-based variant of Golog
and then introduce LTLf in the context of Golog programs.

The Logic ES

The logic ES (Lakemeyer and Levesque 2010) is a first-order
modal variant of the situation calculus. Following (Zarrieß
and Claßen 2016), we consider ES formulas restricted to C2.

Syntax Terms are of sort object or action. We use x, y, . . .
(possibly with decorations) to denote object variables, and a
for a variable of sort action. NO is a countably infinite set
of object constant symbols, and NA a countably infinite set
of action function symbols whose arguments are all of sort
object. Let NO denote the set of all ground terms (called
standard names) of sort object, and NA those of sort ac-
tion. Formulas are constructed over equality atoms and flu-
ent predicates with at most two arguments of sort object,
using the usual Boolean connectives, quantifiers, counting
quantifiers, as well as modalities �φ (“φ holds after any se-
quence of actions”), and [t]φ (“φ holds after executing action
t”). We call a formula fluent if it does not mention � or [·].
A sentence is a formula without free variables. A C2-fluent
formula is a fluent formula without actions and with at most
two variables.

Semantics A trace is a finite sequence of action stan-
dard names. When a trace represents a history of already
executed actions, it is called a situation. For a trace z =
〈α1, . . . , αn〉 ∈ Z , we write |z| for the length n of z, z · α
for the concatenation 〈α1, . . . , αn, α〉 of z with an action α,
z[i] for the ith action αi, z[..i] for the prefix 〈α1, . . . , αi〉,
and z[i..] for the suffix 〈αi, . . . , αn〉. Let Z = N ∗

A be the
set of all traces, and PF the set of all primitive formulas
F (n1, ..., nk), where F is a k-ary fluent with 0 ≤ k ≤ 2 and
the ni are object standard names. A world w maps primitive
formulas and situations to truth values, i.e., w : PF × Z →
{0, 1}. The set of all worlds is denoted by W .

Definition 1 (Truth of Formulas). Let w ∈ W be a world
and α an action standard name. We define for every z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;

2. w, z |= (n1 = n2) iff n1 and n2 are identical;

3. w, z |= φ1 ∧ φ2 iff w, z |= φ1 and w, z |= φ2;

4. w, z |= ¬φ iff w, z 6|= φ;

5. w, z |= ∀x.φ iff w, z |= φxn for every n ∈ Nx;

6. w, z |= ∃≤mx.φ iff |{n ∈ Nx | w, z |= φxn}| ≤ m;

7. w, z |= ∃≥mx.φ iff |{n ∈ Nx | w, z |= φxn}| ≥ m;

8. w, z |= �φ iff w, z · z′ |= φ for every z ∈ Z;

9. w, z |= [α]φ iff w, z · α |= φ.

Here, Nx refers to the set of all standard names of the
same sort as x, and φxn the result of simultaneously replacing
all free occurrences of x in φ by n. We understand ∨, ∃, ⊃,
≡, ⊤ and ⊥ as the usual abbreviations. For a set of sentences
Σ and a sentence α, we write Σ |= α (read: Σ entails α) to
mean that for every w, if w, 〈〉 |= α′ for every α′ ∈ Σ, then
w, 〈〉 |= α. Finally, we write |= α (read: α is valid) to mean
{} |= α. Note that rule 2 above includes a unique names
assumption for actions and objects into the semantics.

Basic Action Theories

To encode a dynamic domain, we employ a basic action
theory (BAT) (Reiter 2001a) with additional restrictions
(Zarrieß and Claßen 2016) for ensuring decidability:

Definition 2 (Basic Action Theory). A basic action theory
(BAT) D = D0 ∪ Dpre ∪ Dpost is a set of axioms, where

D0 is a finite set of C2-fluent sentences describing the initial
state of the world, Dpre consists of a single sentence1 of the

form �Poss(a) ≡ π, where π is a C2-fluent formula with
free variable a, and Dpost is a finite set of successor state
axioms (SSAs), one for each fluent, of the form �[a]F (~x) ≡
γ+F ∨F (~x)∧¬γ

−
F , where the positive effect condition γ+F and

the negative effect condition γ−F are disjunctions of formulas
of the form ∃~y. (a = A(~v) ∧ ε ∧ κ) such that

• the free variables of the formula ~y. (a = A(~v) ∧ ε ∧ κ)
are among ~x and a,

• A(~v) is an action term and ~v contains ~y,

• the effect descriptor ε is a fluent formula with no terms of
sort action and the number of variables in ε that do not
occur in ~v or occur bound in ε is less or equal two,

1The operator � has lowest precedence while [·] has highest
precedence and free variables are implicitly assumed to be univer-
sally quantified from the outside.

• the context condition κ is a fluent formula with free vari-
ables among ~v, no terms of sort action, and at most two
bound variables.

Intuitively, the effect descriptor is the part of the effect con-
dition that expresses which objects are affected, while the
context condition encodes whether the effect takes place.

Acyclic BATs For a BAT D, we can construct the fluent
dependency graph∆D , which captures the dependencies be-
tween fluents in the effect descriptors. In ∆D , each node is
a fluent of D and there is a directed edge (F, F ′) from fluent
F to fluentF ′ if there exists a disjunct ∃~y.(a = A(~v)∧ε∧κ)
in γ+F or γ−F such that F ′ occurs in ε. A BAT is acyclic if ∆D

is acyclic. Furthermore, the fluent depth of an acyclic BAT,
denoted by fd(D), is the length of the longest path in ∆D

and the fluent depth of F w.r.t. D, denoted by fdD(F), is the
length of the longest path in ∆D starting in F .

Golog Programs

We consider a set of program expressions that includes
ground actions (α), tests for C2-fluent sentences (φ?), se-
quence of subprograms (δ1; δ2), nondeterministic choice
(δ1|δ2), interleaved concurrent execution (δ1||δ2), and non-
deterministic iteration (δ∗). We write nil =̇ ⊤? for the empty
program that always succeeds.

A Golog program G = (D, δ) consists of a C2-BAT
D = D0 ∪ Dpost and a program expression δ where all flu-
ents occurring in D and δ have a SSA in Dpost. For a program
G = (D, δ), we write AG for all action terms occurring in δ
and we may omit the subscript if G is clear from context.

The semantics of Golog programs is based on transitions
between configurations, where a configuration 〈z, ρ〉 con-
sists of a sequence of already performed actions z ∈ Z and
the remaining program ρ ∈ sub(δ). Given a world w ∈ W ,

the transition relation
w
−→ among configurations is defined

inductively. As an example, 〈z, α〉
w
−→ 〈z ·α, nil〉 is the tran-

sition for a primitive action α. The set of final configurations
Fin(w) defines the configurations where the program may
terminate, e.g., 〈z, ψ?〉 ∈ Fin(w) if w, z |= ψ. We write
‖δ‖zw for the set of traces starting in configuration 〈z, δ〉 and
ending in a final configuration. The full definition can be
found in the supplementary material.

Situation-Determined Programs Following (De Gia-
como, Lespérance, and Muise 2012), we say that a program
G = (D, δ) is situation-determined, iff for all w ∈ W with
w |= D, all z, z′ ∈ Z , and all program expressions δ′, δ′′:

〈z, δ〉
w
−→

∗
〈z′, δ′〉 and 〈z, δ〉

w
−→

∗
〈z′, δ′′〉 implies δ′ = δ′′.

We assume that all programs are situation-determined.

LTLf

For temporal properties, we define temporal formulas with
the same syntax as LTLf formulas, but replacing proposi-
tions with C2-fluent sentences φ, i.e., Φ ::= φ | Φ ∧ Φ |
X Φ | Φ U Φ. For a temporal formula Φ, we denote the set
of subformulas of Φ with cl(Φ). For a set of formulas Ψ, we
write

∧

Ψ for
∧

Φ∈Ψ Φ. As usual, we define F Φ =̇ ⊤ U Φ
and G Φ =̇ ¬F ¬Φ, as well as Φ1 ∨ Φ2 =̇ ¬(¬Φ1 ∧ ¬Φ2),

N Φ =̇ ¬X ¬Φ, and Φ1 R Φ2 =̇ ¬(¬Φ1 U ¬Φ2). We de-
fine the truth of a temporal formula Φ, given a world w and
traces z, z′:

• w, z, z′ |= φ iff w, z |= φ,

• w, z, z′ |= Φ1 ∧ Φ2 iff w, z, z′ |= Φ1 and w, z, z′ |= Φ2,

• w, z, z′ |= X Φ iff z′ = α · z′′ 6= 〈〉 and w, z ·α, z′′ |= Φ,

• w, z, z′ |= Φ1 U Φ2 iff there exists k ≤ |z′| such that
w, z · z′[..k], z′[k + 1..] |= Φ2 and for all 0 ≤ i < k,
w, z · z′[..i], z′[i+ 1..] |= Φ1.

TNF and XNF As we intend to track the satisfiability
of the temporal formula Φ over the traces of the program,
we adapt Tail Normal Form (TNF) and neXt Normal Form
(XNF) from (Li et al. 2020). TNF explicitly marks the end of
satisfying traces, while XNF allows us to split the temporal
formula into a local part, which can be evaluated at the cur-
rent state, and a future part, which is evaluated against the re-
maining trace. First, we say a formula is in Negated Normal
Form (NNF) if all negations are in front of only atoms. Each
LTLf formula can be transformed into NNF by using the dual
operators to push negation inwards. Based on NNF, we de-
fine TNF, which marks the last state of satisfying traces:

Definition 3. Let Φ be an LTLf formula in NNF. Its TNF
tnf(Φ) is defined as t(Φ) ∧ F Tail , where Tail is a new
atom to identify the last state of satisfying traces and t(Φ) is
an LTLf formula defined recursively as follows:

1. t(Φ) = Φ if Φ is ⊤,⊥, or a C2-fluent sentence;

2. t(X (Ψ)) = ¬Tail ∧ X (t(Ψ));
3. t(N (Ψ)) = Tail ∨ X (t(Ψ));
4. t(Φ1 ∧Φ2) = t(Φ1) ∧ t(Φ2);
5. t(Φ1 ∨Φ2) = t(Φ1) ∨ t(Φ2);
6. t(Φ1 U Φ2) = (¬Tail ∧ t(Φ1)) U t(Φ2);
7. t(Φ1 RΦ2) = (Tail ∨ t(Φ1))R t(Φ2).

When interpreting a TNF formula over a trace, Tail needs
to be treated separately, as it is not a fluent sentence. We
define: w, z, z′ |= Tail iff z′ = 〈〉. It can be shown that Φ
and tnf(Φ) are equivalent:2

Theorem 1. Let Φ be a temporal formula, w a world, and z
and z′ traces. Then w, z, z′ |= Φ iff w, z, z′ |= tnf(Φ).

In the following, each LTLf formula is assumed to be in
TNF and we may omit the common part F Tail .

We continue by interpreting temporal formulas as propo-
sitional formulas by treating sub-formulas with a tem-
poral operator as outermost connective as if they were
propositional atoms. For a temporal formula Φ, we de-
fine the set of propositional atoms PA(Φ) of Φ induc-
tively: (1) PA(Φ) = {Φ} if Φ is an atom, X , U , or
R formula; (2) PA(Φ) = PA(Ψ) if Φ = ¬Ψ; and
(3) PA(Φ) = PA(Φ1) ∪ PA(Φ2) if Φ = Φ1 ∧ Φ2 or
Φ = Φ1 ∨ Φ2. For a temporal formula Φ, let Φp be
Φ understood as a propositional formula over PA(Φ). A
propositional assignment P of Φp is a partial function P :
PA(Φ) → {0, 1} that assigns truth values to the proposi-
tional atoms PA(Φ). We write P |= Φp if P satisfies Φp.
A propositional assignment P can also be understood as a

2Proofs can be found in the supplementary material.

set of literals {p ∈ PA(Φ) | P (p) = 1} ∪ {¬p ∈ PA(Φ) |
P (p) = 0} and we use P to denote both interchangeably.

If Φ is satisfiable, then there exists a corresponding propo-
sitional assignment:

Lemma 2. Let w be a world, Φ an LTLf formula, and z and
z′ traces. Then w, z, z′ |= Φ implies there exists a proposi-
tional assignment P with P |= Φp and w, z, z′ |=

∧

P .

The converse is not necessarily true: Let Φ = X (a) ∧
X (¬a). Clearly, Φ is not satisfiable, but {X (a),X (¬a)} is
a satisfying propositional assignment of Φp.

We now define XNF, where each U and R operator is
pushed inwards such that the only outermost temporal con-
nective is X :

Definition 4. Let Φ be a temporal formula. Its neXt Normal
Form (XNF) xnf(Φ) is defined recursively as follows:

1. xnf(Φ) = Φ if Φ is ⊤,⊥, a C2-fluent sentence, or X Ψ;

2. xnf(Φ1 ∧Φ2) = xnf(Φ1) ∧ xnf(Φ2);
3. xnf(Φ1 ∨Φ2) = xnf(Φ1) ∨ xnf(Φ2);
4. xnf(Φ1 U Φ2) = xnf(Φ2) ∨ (xnf(Φ1) ∧ X (Φ1 U Φ2));
5. xnf(Φ1 RΦ2) = xnf(Φ2) ∧ (xnf(Φ1) ∨ X (Φ1 R Φ2)).

It can be shown that Φ and xnf(Φ) are equivalent:

Theorem 3. Let Φ be a temporal formula, w a world, and z
and z′ finite traces. Thenw, z, z′ |= Φ iffw, z, z′ |= xnf(Φ).

For a propositional assignment P of Φp in XNF, we de-
fine L(P) = {l | l ∈ P is a literal other than (¬)Tail },
X(P) = {θ | X θ ∈ P}, and T (P) = ⊤ if Tail ∈ P and
T (P) = ⊥ otherwise.

XNF allows us to track the partial satisfaction of a tempo-
ral formula over a trace. After each action, we will determine
each satisfying assignment P such that L(P) is satisfied by
the current state and we will track X(P) in the remaining
trace. We will use this in the following to construct a game
arena that tracks the satisfaction of a temporal formula Φ.

4 Approach

Our goal is to determine an execution of a given Golog pro-
gram that satisfies the given temporal formula, for all pos-
sible environment behaviors. The controller must determine
which actions to execute; more specifically, which branch to
follow in all nondeterministic choices of the program, while
not restricting the environment in its actions. Formally, our
goal is to find a successful policy, defined as follows:

Definition 5 (Policy). Let G = (D, δ) be a Golog program
and A = AC ∪̇AE a partition of the actions A of G into
controllable and environment actions. A policy is a partial
mapping π : W × Z × sub(δ) → 2A such that: (1) if
w |= D, then π is defined on (w, 〈〉, δ); (2) if α ∈ π(w, z, ρ),

then 〈z, ρ〉
w
−→ 〈z · α, ρ′〉 for some ρ′ ∈ sub(δ); (3) if

α ∈ π(w, z, ρ) and 〈z, ρ〉
w
−→ 〈z ·α, ρ′〉, then π is defined on

(w, z ·α, ρ′); (4) if α ∈ AE and 〈z, ρ〉
w
−→ 〈z ·α, ρ′〉 for some

ρ′ ∈ sub(δ), then α ∈ π(w, z, ρ); and (5) if π(w, z, ρ) = ∅,
then 〈z, ρ〉 ∈ Fin(w).

Intuitively, a policy chooses a subset π(w, z, ρ) from all
possible actions in the current configuration 〈z, ρ〉 and world

w. From this subset, the environment then chooses one ac-
tion to be executed. The agent’s choices are restricted: Ev-
ery possible environment action must be selected, hence the
agent can never limit the environment’s choices.

A policy π induces a set of traces ‖π‖w in world w,
where z = 〈α1, . . . , αn〉 ∈ ‖π‖w if there are ρ1, . . . , ρn

such that (1) 〈〈〉, δ〉
w
−→ 〈z[..1], ρ1〉

w
−→ · · ·

w
−→ 〈z, ρn〉;

(2) αi+1 ∈ π(w, z[..i], ρi); and (3) π(w, z, ρn) ⊆ AE and
〈z, ρn〉 ∈ Fin(w). Hence, the environment may choose to
terminate the execution if 〈z, ρ〉 is a final configuration and
the agent chose no further actions to execute. Note that by
definition, a policy is a restriction of the program execu-
tion, i.e., ‖π‖w ⊆ ‖δ‖w. We call a policy terminating if
for every infinite sequence of π-compatible configurations
〈〈〉, δ〉, 〈z1, ρ1〉, 〈z2, ρ2〉, . . . and for every i, there is a j ≥ i
such that π(w, zj , ρj) ⊆ AE and 〈zj , ρj〉 ∈ Fin(w). In-
tuitively, a terminating policy ensures that at any point of
the execution trace, there is some future final configuration
where the policy does not choose any agent actions and
hence the environment may terminate. A policy may still
result in an infinite trace if the environment continues to se-
lect actions indefinitely. However, we exclude those from
consideration as we assume that the environment eventually
stops. We can now formalize our goal:

Definition 6 (Synthesis Problem). Given a Golog program
G = (D, δ) and a temporal formula Φ, find a policy π for
G that satisfies Φ, i.e., for every world w with w |= D and
every z ∈ ‖π‖w, it holds that w, 〈〉, z |= Φ.

We note that it is in general undecidable to determine
whether a satisfying policy exists. In (Zarrieß and Claßen
2014a, 2016) it was shown that the related verification prob-
lem (a special case of the synthesis problem) becomes decid-
able if (1) C2 is used as base logic, (2) successor state axioms
are acyclic, and (3) “pick operators” are disallowed, i.e., all
actions in the program are ground. Furthermore, dropping
any of these three restrictions while maintaining the other
two immediately leads to undecidability: for (1) this is due
to the undecidability of FOL, and for (2) and (3) due to the
possibility of reducing the halting problem for Turing ma-
chines to the verification problem.

In the following, applying the same three restrictions, we
describe a sound and complete method for determining a ter-
minating policy π that satisfies Φ. We will do so by con-
structing a finite game arena A

Φ
G that captures the possi-

ble program executions while tracking the satisfaction of Φ.
Once we have constructed A

Φ
G , we can use a game-theoretic

approach to determine a terminating policy that satisfies Φ.
However, as both the number of worlds satisfying D and the
number of reachable program configurations is generally in-
finite, we first need to construct a finite abstraction based on
characteristic graphs and types.

Characteristic Graphs

We use characteristic graphs (Claßen and Lakemeyer 2008)
as a finite encoding of the reachable program configurations.
In such a graph, the nodes correspond to programs ρ, intu-
itively representing what remains to be executed, while an

edge ρ
α:ψ
−−→ ρ′ encodes that a transition is possible from ρ

to ρ′ through action α, if formula ψ holds. In addition, each
program ρ has an associated termination condition ϕ(ρ), in
the form of a fluent formula (the full definition is presented
in the supplementary material). Given an input program δ,
its characteristic graph Cδ = 〈v0, V, E〉 is now defined in-
ductively so that v0 = δ ∈ V (initial node), and the nodes
V and edges E are the smallest sets obtained by repeatedly
adding reachable nodes and edges, respectively. In particu-
lar, we will often identify the set V obtained in this fashion
with sub(δ), the subprograms reachable from δ. We note:

Lemma 4. For any program δ, Cδ is finite, and for
any world w, situation z, and δ′ ∈ sub(δ), it holds
that (1) 〈z, δ′〉 ∈ Fin(w) iff w, z |= ϕ(δ′); and

(2) 〈z, δ′〉
w
−→ 〈z · α, δ′′〉 iff δ′

α:ψ
−−→ δ′′ and w, z |= ψ.

Characteristic graphs therefore exactly capture the pro-
gram transition semantics. We can hence use them as finite
abstractions of the reachable program configurations. Also,
using characteristic graphs, there is a (simple to test) suffi-
cient condition for programs being situation-determined:

Lemma 5. If every ground action α occurs at most once
among the outgoing edges of every node in Cδ, then δ is
situation-determined.

Types

With characteristic graphs, we already have a finite repre-
sentation of the possible program configurations. However,
there are additional sources of infiniteness. For one, dur-
ing the execution of a program, we may accumulate in-
finitely many effects. Second, there are infinitely many pos-
sible worlds that satisfy the BAT D. However, for acyclic
BATs, it has been shown that the set of possible effects is
finite, and that the set of worlds that satisfy D can be repre-
sented by a finite set of equivalence classes, so-called types
of worlds (Zarrieß and Claßen 2016). We will now describe
how to construct types for a given BAT D.

As our programs may only mention finitely many ground
actions, we can rewrite the SSAs of an acyclic BAT by
grounding the effects. This is done by replacing each SSA
for a fluent F (~x) by a set of instantiated formulas, one for

each α ∈ A, of the form �[α]F (~x) ≡ (γ+F)
a
α ∨ F (~x) ∧

¬(γ−F)
a
α. As each γ±F is a disjunction of formulas of the

form ∃~y.(a = A(~v) ∧ ǫ ∧ κ), the resulting positive effect

condition (γ+F)
a
α is equivalent to a disjunction of the form

ǫ1∧κ1∨. . .∨ǫn∧κn, which allows us to write (γ+F)
a
α as a set

of pairs (γ+F)
a
α =

∨

i{(ǫi, κi)}i. We write (ǫ, κ) ∈ (γ+F)
a
α

if (ǫ, κ) occurs in the disjunction (analogously for (γ−F)
a
α).

For a fluent F , the set of positive effect descriptors is then
defined as eff

+
A(F) := {ε | (ε, κ) ∈ (γ+F)

a
α for some α ∈

A}, and similarly for negative effect descriptors eff
−
A(F).

Hence, we can write a set of effects E as a set of pairs
E = {〈F±

i , εi〉}i, where εi ∈ eff
+
A(F) or εi ∈ eff

−
A(F).

We define a variant of regression on such a set of effects:

Definition 7 (Regression). Let E be a set of effects and ϕ a
C2 fluent formula. The regression of ϕ through E, denoted
by R[E,ϕ] is a C2 fluent formula obtained from ϕ by re-
placing each occurrence of a fluentF (~v) in ϕ by the formula

F (~v) ∧
∧

〈F−,ε〉∈E ¬ε~x~v ∨
∨

〈F+,ε〉∈E ε
~x
~v .

Furthermore, in an acyclic BAT, the effect descriptor ε of
a fluent F with fd(F) = i may only mention fluents with
depth strictly smaller than i. Thus, when regressing the ef-
fect descriptor ε of a fluent F with fd(F) = i, only effects
on fluents with depth strictly smaller than i are relevant.
Hence, for a Golog program G = (D, δ) with an acyclic
BAT D, there are only finitely many possible effects that
can be generated by action sequences from A. We denote
the set of all relevant effects on all fluents with depth ≤ j

with j = 0, . . . , fd(D) by E
D,A
j , and define it as follows:

E
D,A
0 =̇ {〈F±, ε〉 | fdD(F) = 0, ε ∈ eff

−
A(F) ∪ eff

+
A(F)}

E
D,A
i =̇ E

D,A
i−1 ∪ {〈F−,R[E, ε]〉 | fdD(F) = i, ε ∈ eff

−
A(F),E ∈ 2

E
D,A
i−1 }

∪ {〈F+,Ξ〉 | fdD(F) = i, φ ∈ eff
+
A(F),E ∈ 2

E
D,A
i−1 ,

X ⊆ eff
−
A(F)× 2

E
D,A
i−1 }

with Ξ =̇
(

R[E, φ] ∧
∧

(ε,E′)∈X

¬R[E′, ε]
)

We define ED,A =̇ E
D,A
n with fd(D) = n.

Additionally, we define the context of a program C(G) as
the set of relevant C2-fluent sentences that occur in the ini-
tial theory, in context conditions of the instantiated SSAs,
in guards and termination conditions of the characteristic
graph, and in the temporal formula, and we ensure that the
context is closed under negation. We can now define types:

Definition 8 (Type of a world). Let G = (D, δ) be a Golog
program with an acyclic BATD = D0∪Dpost w.r.t. a finite set
of ground actions A. Furthermore, let C(G) be the context of
G and E

D,A the set of all relevant effects. The set of all type
elements is given by TE(G) =̇ {(ψ,E) | ψ ∈ C(G), E ⊆
E
D,A}. A type w.r.t. G is a set τ ⊆ TE(G) that satisfies:

1. For all ψ ∈ C(G) and all E ⊆ E
D,A it holds that either

(ψ,E) ∈ E or (¬ψ,E) ∈ E;

2. There exists a world w ∈ W such that w |= D0 ∪
{R[E,ψ] | (ψ,E) ∈ τ}.

The set of all types w.r.t. G is denoted by Types(G). The type
of a worldw ∈ W w.r.t. G is given by type(w) =̇ {(ψ,E) ∈
TE(G) | w |= R[E,ψ]}.

Definition 9. Let τ ∈ Types(G), E ⊆ E
D,A, and α ∈ A.

The effects of executing α in (τ, E) are given by

ED(τ, E,α) =̇ {〈F+, ε〉 | ∃(ε, κ) ∈
(

γ+
F

)

a
α s.t. (κ, E) ∈ τ} ∪

{〈F−, ε〉 | ∃(ε, κ) ∈
(

γ−
F

)

a
α s.t. (κ,E) ∈ τ}

Definition 10. Let ϕ be a C2 fluent formula and E0 and E1

two sets of effects. The accumulation E0 ⊲ E1 of E0 and E1

is defined as follows:

E0 ⊲ E1 =̇ {〈F±,R[E0, ϕ]〉 | 〈F
±, ϕ〉 ∈ E1}

∪ {〈F+, (ϕ ∧
∧

〈F−,ϕ〉∈E1

¬R[E0, ϕ
′])〉 | 〈F+, ϕ〉 ∈ E0} ∪ {〈F−, ϕ〉 ∈ E0}

Let w be a world with w |= D, type(w) = τ , and
z = 〈α1, . . . , αn〉 a trace. We define E0 =̇ ∅ and Ei =̇
Ei−1 ⊲ ED(τ, E, α) for 1 ≤ i ≤ n. We also write Ez for the
effect En that is generated by executing z = 〈α1, . . . , αn〉
in w. The following theorem shows the correctness of the
construction (Zarrieß and Claßen 2016):

Theorem 6. Let G = (D, δ) be a Golog program, w a
world with w |= D, and z ∈ A∗ a trace. Then w, z |= φ
iff (φ,Ez) ∈ type(w).

Hence, types provide a finite representation of the worlds
satisfying D and all effects that can be generated by δ.

Game Arena

With types, characteristic graphs, and XNF formulas, we can
define a game arenaAΦ

G that captures the possible executions
of a program G while tracking the satisfaction of Φ:

Definition 11. Let G = (D, δ) be a Golog program
and Φ a temporal formula. The game arena A

Φ
G =

(S,S0,→,SF ,SA) for G and Φ is defined as follows:

• Each state s ∈ S is of the form s = (τ, E,A, ρ) where
τ ∈ Types(G), ρ ∈ sub(δ) is a node of the character-
istic graph, E ⊆ E

D,A, and A = {(χi, θi)}i, where
χi ⊆ cl(Φ), θi ∈ {⊤,⊥}.

• A state s = (τ, E,A, ρ) is an initial state s ∈ S0 if
τ = type(w) for some w with w |= D, ρ = δ is the
initial program expression, E = ∅, and (χ, θ) ∈ A iff
there is a propositional assignment P of xnf(Φ)p such
that {(ψ,E) | ψ ∈ L(P)} ⊆ τ , χ = X(P), θ = T (P).

• There is a transition s1
α
−→ s2 from s1 = (τ, E,A1, ρ1)

to s2 = (τ, E2, A2, ρ2) if there is an edge ρ1
α:ψ
−−→ ρ2 in

Cδ such that (ψ,E1) ∈ τ , E2 = E1 ⊲ ED(τ, E1, α), and
(χ2, θ2) ∈ A2 if there is a propositional assignment P of
xnf(

∧

χ
p
1) for some (χ1, θ1) ∈ A1 such that θ1 = ⊥,

{(ψ,E2) | ψ ∈ L(P)} ⊆ τ , χ2 = X(P), θ2 = T (P).

A state s = (τ, E,A, ρ) is final if (ϕ(ρ), E) ∈ τ and accept-
ing if (∅,⊤) ∈ A. We denote the set of all final states with
SF and the set of all accepting states with SA. We also write
type(s) = τ for the type of the world in s.

Each state consists of (1) a type τ , representing an equiv-
alence class of worlds; (2) a node ρ of the characteristic
graph that captures the remaining program and the termi-
nation condition; (3) a set of effects E that have been ac-
cumulated so far; and (4) a set of temporal formulas A that
must be satisfied in the remaining execution of the program
in order to satisfy the specification Φ. The initial states are
those states with the initial program expression and no ac-
cumulated effects. Furthermore, regarding the temporal for-
mula Φ and A of an initial state, we first compute all the
propositional assignments of xnf(Φ)p. For each assignment
P , we check whether the local part L(P) is satisfied by the
state. If so, the pair (χ, θ) = (X(P), T (P)) is added to A,
which intuitively states that χ must be satisfied in the future
and the program should terminate if θ is true. For transitions,
we first check whether there is an edge in the characteristic
graph that allows the execution of the next action. If so, we
accumulate the effects and check whether there is a proposi-
tional assignment of xnf(

∧

χ
p
1) for some (χ1, θ1) ∈ A1 that

allows the satisfaction of the temporal formulas in A2. Sim-
ilar to the initial states, we do so by checking whether the
local part L(P) is satisfied by the current state and tracking
X(P) and T (P) in the future.

By definition, a state is final if the program may terminate
and it is accepting if Φ is satisfied. Also note that AΦ

G is

finite as both types and reachable sub-programs are finite.
It is also deterministic, as G is situation-determined and for
action successors, the satisfying assignments of xnf(Φ)p are
collected in a single successor state.

We can show that AΦ
G indeed corresponds to the execu-

tions of G while tracking the satisfaction of Φ:

Theorem 7. Every execution of G = (D, δ) satisfies Φ iff
every reachable final state of AΦ

G is accepting.

This provides us a decidable method for verifying an LTLf

property Φ against a Golog program G. However, the goal is
to determine a policy that executes G while satisfying Φ.

Synthesis

Above, we have described a finite game arena A
Φ
G that cap-

tures the executions of a program G while tracking the sat-
isfaction of a given LTLf formula Φ. In the following, we
use a game-theoretic approach on A

Φ
G to determine a policy

that successfully executes G while satisfying Φ. We do so by
defining a game between two players, the system and the en-
vironment, that play on A

Φ
G . We start by defining a strategy,

which intuitively translates the conditions on a policy to the
game arena AΦ

G :

Definition 12 (Strategy). Let A
Φ
G be the game arena for

some Golog program G and temporal formula Φ. Let s ∈ S
be a state of AΦ

G . A set of actions U ⊆ A is valid in s under
the following conditions: (1) if α ∈ U , then there is an edge

s
α
−→ s′ for some s′ ∈ S; (2) if s

α
−→ s′ for some α ∈ AE

and s′ ∈ S, then α ∈ U ; and (3) if U = ∅, then s is a final
state. A strategy in A

Φ
G is a partial function σ : S → 2A

such that: (1) σ is defined on every initial state of AΦ
G ; (2) if

σ is defined on s ∈ S, then σ(s) is valid in s; and (3) if

σ is defined on s ∈ S, α ∈ σ(s), and s
α
−→ s′ for some

s′ ∈ S, then σ is defined on s′. We also write s
σ
−→ s′ if

there is α ∈ σ(s) such that s
α
−→ s′. A strategy σ induces a

set of plays plays(σ), which are those paths in A
Φ
G consis-

tent with σ. Formally, p = 〈s0, . . . , sn〉 ∈ plays(σ) if (1) s0

is an initial state of AΦ
G ; (2) for each i, si

σ
−→ si+1; and

(3) σ(sn) ⊆ AE and sn is a final state of AΦ
G . A play is win-

ning if it ends in an accepting state. A strategy σ is winning
if every play p ∈ plays(σ) is winning. We call a strategy σ
terminating if for every infinite sequence of states s0, s1, . . .

with sk
σ
−→ sk+1 for every k, it holds that for every i, there

is a j ≥ i such that σ(sj) ⊆ AE and sj is final.

Proposition 8. There is a terminating and winning strategy
σ in A

Φ
G if and only if there exists a terminating policy π for

G that satisfies Φ.

Hence, we need to determine a terminating and winning
strategy in A

Φ
G . In principle, this can be done with back-

ward search starting in a set of good states and then checking
whether the agent can force every play to end in a good state.
However, not every final and accepting state is necessarily
good, as the environment may force a play from this state
that ends in a non-accepting state. On the other hand, every
winning play must end in an accepting state, so if a strategy
exists, there must be an enforceable set of final and accepting

Algorithm 1: Labeling

1: for all H ∈ 2SF ∩SA do
2: G← H ; R← H ∩ {s | SuccE(s) = ∅}; σ ← ∅
3: Q← {s | Succ(s) ∩H 6= ∅}
4: while Q 6= ∅ do
5: s← POP(Q)
6: if s ∈ SF \ SA ∧ SuccC(s) = ∅ then continue
7: if s ∈ R then continue
8: if SuccE(s) 6= ∅ ∧ ∀s

′ ∈ SuccE(s) : s
′ ∈ G ∨

SuccE(s) = ∅ ∧ ∃s
′ ∈ SuccC(s) : s

′ ∈ G then
9: G← G ∪ {s}; R← R ∪ {s}

10: if s ∈ SF ∩ SA then
11: σ(s)← {α | ∃s′ ∈ SuccE(s). s

α
−→ s′}

12: else σ(s)← {α | ∃s′ ∈ G. s
α
−→ s′}

13: Q← Q ∪ {s′ | s ∈ Succ(s′)}
14: if H ∪ S0 ⊆ R then return σ

states. Hence, we can guess which final and accepting states
are enforceable and then check if there is indeed a strategy
that can force every play to end in those states.

This approach is formalized in Algorithm 1. It starts with
a hypothesis H ⊆ SF ∩ SA of good states G and tracks
the states R that can reach G. It then iteratively checks the
predecessors of all states in G whether the agent can force
the play to end in G. This is the case if all environment suc-
cessors SuccE(s) are in G or if there is a control successor
SuccC(s) in G. If a state is found that can be forced to end
in G, it is added to G and R and σ is updated accordingly.
Finally, if all states of H and all initial states S0 can in fact
reach G, then σ is a winning and terminating strategy:

Theorem 9. Algorithm 1 terminates and returns a winning
and terminating strategy if one exists.

5 Evaluation

We implemented the method in the Prolog-based Golog in-
terpreter vergo (Claßen 2018), that, different from other
implementations, uses full FOL as base logic, where an em-
bedded theorem prover (Schulz 2013) is used for reasoning
tasks such as deciding entailment and consistency. The sys-
tem contains optimizations for handling FO expressions, in
particular an FO variant of binary decision diagrams.

In our implementation, the construction of the abstract
game arena follows closely Definition 11. However, the con-
struction is done in an incremental fashion, where only the
relevant and reachable parts are actually materialized. This
is achieved by keeping the types as general as possible, and
only including additional formulas once they are needed.
More specifically, the method works by iterating the follow-
ing steps, until no more changes occur:

Initialize: Create initial states (τ, ∅, A, δ), where types τ
are constructed only from formulas in D0 and literals L(P)
of propositional assignments over A.

Split: If there is a state (τ, E,A, ρ) that does not entail a
truth value for some required conditionψ (the transition con-
dition for an action α, the termination condition ϕ(ρ), the
condition κ of an effect, or a literal l ∈ L(P) of a propo-
sitional assignment over A), then create two copies of all

states and transitions, where one includes ψ and the other
includes ¬ψ into τ , discarding states with inconsistent τ .

Expand: If a state s = (τ, E,A, ρ) admits an action α, cre-

ate the successor state s′ and the transition s
α
−→ s′.

We represent τ directly by the regressed versions of formu-
las to avoid having to regress them repeatedly. The construc-
tion also stops in states where A = ∅, since the correspond-
ing traces can never satisfy the input property.

We evaluated the method on two domains, a dishwasher
robot that has to move between rooms and collect nondeter-
ministically placed dirty dishes, and a warehouse robot that
moves boxes which may nondeterministically fall and break
their contents, unless they contain bubble-wrap (detailed de-
scriptions can be found in the supplementary material). Input
programs and specifications were chosen so that a success-
ful strategy ensures that eventually all dishes remain clean,
and all items in boxes get moved without breaking, respec-
tively. We varied the number of dishes, rooms, and boxes,
and measured the method’s runtime as well as the size of the
resulting game arenas and extracted strategies. The set time-
out of 20 minutes was reached quickly for instances with 3
or more rooms, 3 or more dishes, and 3 or more boxes, yield-
ing game arenas with around 3000 states and transitions. In-
tuitively, this is because adding a single object results in a
large number of new ground actions, and hence additional
states and transitions. While the experiments thus showed
that the method works in principle, there is certainly room
for improvement. In particular, both domains include a num-
ber of objects that each need to be handled independently in
the same way (e.g., “for every box b, put bubble wrap in b,
and move it from shelf s1 to s2”). For solving the task, the
order of handling objects is hence irrelevant, yet the system
materializes all possible permutations, resulting in a severe
blow-up. An interesting avenue for future work would thus
be to enable our method to be able to detect and deal with
symmetries of this kind.

6 Conclusion

In this paper, we have presented an approach to the real-
ization of Golog programs with uncontrollable actions. We
have formulated the realization problem as a synthesis prob-
lem, where parts of the program are under the environment’s
control and the agent needs to determine a policy that real-
izes the program while satisfying the temporal specification.
The presented approach synthesizes policies for LTLf speci-
fications on Golog programs with first-order action theories
that allow for an unbounded number of objects and non-local
effects, an expressive and decidable fragment of the situa-
tion calculus. We have demonstrated the feasibility of the
approach in two example domains. The synthesis method
can also be understood as a (restricted) first-order variant
of LTLf synthesis, where the user may provide a declarative
specification of the agent’s capabilities along with a partially
specified strategy. For future work, it may interesting to in-
vestigate this relation further.

References

Abadi, M.; Lamport, L.; and Wolper, P. 1989. Realizable
and Unrealizable Specifications of Reactive Systems. In Au-
tomata, Languages and Programming, 1–17. Berlin, Heidel-
berg: Springer.

Bacchus, F.; and Kabanza, F. 1998. Planning for Tempo-
rally Extended Goals. Annals of Mathematics and Artificial
Intelligence, 22(1-2): 5–27.

Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-Theoretic, High-Level Agent Programming
in the Situation Calculus. In Proceedings of the 17th Na-
tional Conference on Artificial Intelligence (AAAI), 355–
362. AAAI Press.

Calvanese, D.; De Giacomo, G.; and Vardi, M. Y. 2002. Rea-
soning about Actions and Planning in LTL Action Theories.
In Proceedings of the 8th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
593–602. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.

Camacho, A.; Baier, J. A.; Muise, C.; and McIlraith, S. A.
2018. Finite LTL Synthesis as Planning. In Twenty-
Eighth International Conference on Automated Planning
and Scheduling (ICAPS).

Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A.; and
McIlraith, S. A. 2017. Non-Deterministic Planning with
Temporally Extended Goals: LTL over Finite and Infinite
Traces. In Proceedings of the 31st AAAI Conference on Ar-
tificial Intelligence (AAAI).

Claßen, J. 2018. Symbolic Verification of Golog Programs
with First-Order BDDs. In Thielscher, M.; Toni, F.; and
Wolter, F., eds., Proceedings of the Sixteenth International
Conference on the Principles of Knowledge Representation
and Reasoning (KR 2018), 524–529. AAAI Press.

Claßen, J.; and Delgrande, J. P. 2021. An Account of Inten-
sional and Extensional Actions, and Its Application to Be-
lief, Nondeterministic Actions and Fallible Sensors. In Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), volume 18,
194–204.

Claßen, J.; and Lakemeyer, G. 2008. A Logic for Non-
Terminating Golog Programs. In Proceedings of the 11th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR), 589–599. AAAI Press.

Claßen, J.; Liebenberg, M.; Lakemeyer, G.; and Zarrieß, B.
2014. Exploring the Boundaries of Decidable Verification
of Non-Terminating Golog Programs. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAAI),
1012–1019. AAAI Press.

Claßen, J.; and Neuss, M. 2016. Knowledge-Based Pro-
grams with Defaults in a Modal Situation Calculus. In Pro-
ceedings of the 22nd European Conference on Artificial In-
telligence (ECAI), 1309–1317. IOS Press.

Claßen, J.; and Zarrieß, B. 2017. Decidable Verification of
Decision-Theoretic Golog. In Frontiers of Combining Sys-
tems, volume 10483, 227–243. Cham: Springer International
Publishing.

De Giacomo, G.; Favorito, M.; Li, J.; Vardi, M.; Xiao, S.;
and Zhu, S. 2022. LTLf Synthesis as AND-OR Graph
Search: Knowledge Compilation at Work. In Proceedings
of the 31st International Joint Conference on Artificial In-
telligence (IJCAI).

De Giacomo, G.; and Lespérance, Y. 2021. The Nondeter-
ministic Situation Calculus. In Proceedings of the Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), volume 18, 216–226. AAAI Press.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a Concurrent Programming Language Based on
the Situation Calculus. Artificial Intelligence, 121: 109–169.

De Giacomo, G.; Lespérance, Y.; Levesque, H. J.; and Sar-
dina, S. 2009. IndiGolog: A High-Level Programming Lan-
guage for Embedded Reasoning Agents. In Multi-Agent
Programming. Springer.

De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012. On
supervising agents in situation-determined ConGolog. In
van der Hoek, W.; Padgham, L.; Conitzer, V.; and Winikoff,
M., eds., Proceedings of the Eleventh International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), 1031–1038. IFAAMAS.

De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2016.
Bounded Situation Calculus Action Theories. Artificial In-
telligence, 237: 172–203.

De Giacomo, G.; and Rubin, S. 2018. Automata-Theoretic
Foundations of FOND Planning for LTLf and LDLf Goals.
In Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI), 4729–4735. Stockholm, Swe-
den: AAAI Press.

De Giacomo, G.; Ternovska, E.; and Reiter, R. 1997. Non-
Terminating Processes in the Situation Calculus. In Pro-
ceedings of the AAAI’97 Workshop on Robots, Softbots, Im-
mobots: Theories of Action, Planning and Control.

De Giacomo, G.; and Vardi, M. Y. 2000. Automata-
Theoretic Approach to Planning for Temporally Extended
Goals. In Recent Advances in AI Planning, 226–238. Berlin,
Heidelberg: Springer.

De Giacomo, G.; and Vardi, M. Y. 2013. Linear Tempo-
ral Logic and Linear Dynamic Logic on Finite Traces. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI), 854–860.

De Giacomo, G.; and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on Finite Traces. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1558–1564. AAAI Press.

Favorito, M. 2023. Efficient Algorithms for LTLf Synthesis.
In Multi-Agent Systems, 540–546. Cham: Springer Nature
Switzerland.

Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. 22. Cham:
Springer.

Grädel, E.; Otto, M.; and Rosen, E. 1997. Two-Variable
Logic with Counting Is Decidable. In Proceedings of Twelfth
Annual IEEE Symposium on Logic in Computer Science
(LICS), 306–317.

Lakemeyer, G.; and Levesque, H. J. 2010. A semantic char-
acterization of a useful fragment of the situation calculus
with knowledge. Artificial Intelligence, 175(1): 142–164.

Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A Logic Programming Lan-
guage for Dynamic Domains. Journal of Logic Program-
ming, 31(1-3): 59–83.

Li, J.; Pu, G.; Zhang, Y.; Vardi, M. Y.; and Rozier, K. Y.
2020. SAT-based Explicit LTLf Satisfiability Checking. Ar-
tificial Intelligence, 289: 103369.

Liu, Y. 2002. A Hoare-Style Proof System for Robot Pro-
grams. In Proceedings of the 18th National Conference on
Artificial Intelligence (AAAI), 74–79. USA: American Asso-
ciation for Artificial Intelligence.

Liu, Y.; and Lakemeyer, G. 2009. On First-Order Definabil-
ity and Computability of Progression for Local-Effect Ac-
tions and Beyond. In Boutilier, C., ed., Proceedings of the
Twenty-First International Joint Conference on Artificial In-
telligence (IJCAI 2009), 860–866. AAAI Press.

McCarthy, J.; and Hayes, P. J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. Ma-
chine Intelligence, 4: 463–502.

Patrizi, F.; Lipoveztky, N.; De Giacomo, G.; and Geffner,
H. 2011. Computing Infinite Plans for LTL Goals Using
a Classical Planner. In Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI).

Pnueli, A.; and Rosner, R. 1989. On the Synthesis of a Re-
active Module. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 179–190. New York, NY: ACM.

Ramadge, P.; and Wonham, W. 1989. The Control of Dis-
crete Event Systems. Proceedings of the IEEE, 77(1): 81–
98.

Reiter, R. 2001a. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.

Reiter, R. 2001b. On Knowledge-Based Programming with
Sensing in the Situation Calculus. ACM Transactions on
Computational Logic, 2(4): 433–457.

Schulz, S. 2013. System Description: E 1.8. In LPAR 2013,
volume 8312 of LNCS, 735–743. Springer.

Shapiro, S.; Lespérance, Y.; and Levesque, H. J. 2002. The
Cognitive Agents Specification Language and Verification
Environment for Multiagent Systems. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 1, 19–26. New York, NY,
USA: Association for Computing Machinery.

Xiao, S.; Li, J.; Zhu, S.; Shi, Y.; Pu, G.; and Vardi, M. 2021.
On-the-Fly Synthesis for LTL over Finite Traces. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(7):
6530–6537.

Zarrieß, B.; and Claßen, J. 2014a. On the Decidability of
Verifying LTL Properties of Golog Programs. In Proceed-
ings of the AAAI 2014 Spring Symposium: Knowledge Rep-
resentation and Reasoning in Robotics (KRR). AAAI Press.

Zarrieß, B.; and Claßen, J. 2014b. Verifying CTL* Proper-
ties of Golog Programs over Local-Effect Actions. In Pro-
ceedings of the Twenty-First European Conference on Arti-
ficial Intelligence (ECAI 2014), 939–944. IOS Press.

Zarrieß, B.; and Claßen, J. 2016. Decidable Verification of
Golog Programs over Non-Local Effect Actions. In Pro-
ceedings of the 30th AAAI Conference on Artificial Intelli-
gence (AAAI), 1109–1115. AAAI Press.

Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017. Symbolic LTLf Synthesis. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1362–1369. Melbourne, Australia: AAAI Press.

A Definitions

Definition 13 (Program Transition Semantics). For any
world w, the set of final configurations Fin(w) is the small-
est set such that

1. 〈z, φ?〉 ∈ Fin(w), if w, z |= φ;

2. 〈z, δ1; δ2〉 ∈ Fin(w), if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 ∈
Fin(w);

3. 〈z, δ1|δ2〉 ∈ Fin(w), if 〈z, δ1〉 ∈ Fin(w) or 〈z, δ2〉 ∈
Fin(w);

4. 〈z, δ1||δ2〉 ∈ Fin(w), if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉 ∈
Fin(w);

5. 〈z, δ∗〉 ∈ Fin(w).

For any world w, the transition relation
w
−→ among configu-

rations is the least set satisfying

1. 〈z, α〉
w
−→ 〈z · α, nil〉, if α is a primitive action;

2. 〈z, δ1; δ2〉
w
−→ 〈z′, ρ; δ2〉, if 〈z, δ1〉

w
−→ 〈z′, ρ〉;

3. 〈z, δ1; δ2〉
w
−→ 〈z′, ρ〉, if 〈z, δ1〉 ∈ Fin(w) and 〈z, δ2〉

w
−→

〈z′, ρ〉;

4. 〈z, δ1|δ2〉
w
−→ 〈z′, ρ〉, if 〈z, δ1〉

w
−→ 〈z′, ρ〉 or 〈z, δ2〉

w
−→

〈z′, ρ〉;

5. 〈z, δ1||δ2〉
w
−→ 〈z′, ρ||δ2〉, if 〈z, δ1〉

w
−→ 〈z′, ρ〉;

6. 〈z, δ1||δ2〉
w
−→ 〈z′, δ1||ρ〉, if 〈z, δ2〉

w
−→ 〈z′, ρ〉;

7. 〈z, δ∗〉
w
−→ 〈z′, ρ; δ∗〉 if 〈z, δ〉

w
−→ 〈z′, ρ〉.

Definition 14 (Characteristic Graph). Given a program ex-
pression δ, the termination condition ϕ(δ) of δ is a fluent
formula inductively defined as folows:

1. ϕ(α) = ⊥ if α is primitive action;

2. ϕ(φ?) = φ;

3. ϕ(δ1; δ2) = ϕ(δ1) ∧ ϕ(δ2);
4. ϕ(δ1|δ2) = ϕ(δ1) ∨ ϕ(δ2);
5. ϕ(δ1||δ2) = ϕ(δ1) ∧ ϕ(δ2);
6. ϕ(δ∗) = ⊤.

For any program expression δ, the set of outgoing edges

δ
α:ψ
−−→ ρ with action α and guard condition ψ to resulting

program ρ is defined inductively as follows:

• α
α:⊤
−−→ nil, if α is a primitive action;

• (δ1; δ2)
α:ψ
−−→ (ρ; δ2), if δ1

α:ψ
−−→ ρ;

• (δ1; δ2)
α:ϕ(δ1)∧ψ
−−−−−−−→ ρ, if δ2

α:ψ
−−→ ρ;

• (δ1|δ2)
α:ψ
−−→ ρ, if δ1

α:ψ
−−→ ρ or δ2

α:ψ
−−→ ρ;

• (δ1||δ2)
α:ψ
−−→ (ρ||δ2), if δ1

α:ψ
−−→ ρ;

• (δ1||δ2)
α:ψ
−−→ (δ1||ρ), if δ2

α:ψ
−−→ ρ;

• δ∗
α:ψ
−−→ (ρ; δ∗), if δ

α:ψ
−−→ ρ.

For any program expression δ, the corresponding character-
istic graph is given by Cδ = 〈v0, V, E〉, where v0 = δ (initial
node), and the nodes V and edges E are the smallest sets
such that

• δ ∈ V ;

• if δ′ ∈ V and δ′
α:ψ
−−→ δ′′, then δ′′ ∈ V and δ′

α:ψ
−−→ δ′′ ∈

E.

B Proofs

Theorem 1. Let Φ be a temporal formula, w a world, and z
and z′ traces. Then w, z, z′ |= Φ iff w, z, z′ |= tnf(Φ).

Proof. We show by structural induction on Φ that for ar-
bitrary w, z, z′, it holds that w, z, z′ |= Ψ iff w, z, z′ |=
tnf(Ψ).

• Let Φ be ⊤,⊥, or a C2-fluent sentence. Then tnf(Φ) = Φ
and the claim holds.

• The Boolean cases follow immediately by induction.

• Let Φ be X (Ψ). Then w, z, z′ |= X (Ψ) iff z′ = α · z′′ 6=
〈〉 andw, z ·α, z′′ |= Ψ. By induction,w, z ·α, z′ |= Ψ iff
w, z · α, z′′ |= tnf(Ψ). On the other hand, by definition,
w, z, z′ |= tnf(X (Ψ)) iff w, z, z′ |= ¬Tail ∧X (t(Ψ)) ∧
F Tail iff z′ 6= 〈〉 and w, z, z′ |= X (tnf(Ψ)). Hence, the
claim holds.

• Let Φ be N (Ψ) and so tnf(Ψ) = (Tail ∨ X (t(Ψ))) ∧
F Tail . If z′ = 〈〉, thenw, z, z′ |= Tail and sow, z, z′ |=
tnf(Ψ). Otherwise, z′ 6= 〈〉 and so w, z, z′ |= N Ψ iff
w, z · α, z′′ |= Ψ for z′ = α · z′′. On the other hand,
w, z · α, z′′ |= tnf(Ψ) iff w, z, z′ |= X (t(Ψ)) ∧ F Tail .
By induction,w, z ·α, z′′ |= tnf(Ψ) iff w, z ·α, z′′ |= Ψ.
With tnf(Ψ) = t(Ψ) ∧ F Tail , the claim holds.

• Let Φ be Ψ1 U Ψ2 and so tnf(Φ) = (¬Tail ∧ t(Ψ1)) U
t(Ψ2) ∧ F Tail .
⇒: Supposew, z, z′ |= Ψ1UΨ2. Then there is some k ≤
|z′| such thatw, z·z′[..k], z′[k+1..] |= Ψ2 and for all 0 ≤
i < k, w, z · z′[..i], z′[i+1..] |= Ψ1. By induction, it fol-
lows that w, z · z′[..k], z′[k+1] |= tnf(Φ2), which holds
iff w, z[..k], z′[k + 1..] |= t(Φ2) ∧ F Tail . Furthermore,
for every i < k, w, z ·z′[..i], z′[i+1..] |= Φ1∧¬Tail and
so by induction w, z[..i], z′[i+ 1..] |= tnf(Φ1) ∧ ¬Tail ,
which implies w, z[..i], z′[i + 1..] |= ¬Tail ∧ t(Φ1).
Hence, w, z, z′ |= (¬Tail ∧ t(Ψ1)) U t(Ψ2) ∧ F Tail .
⇐: Supposew, z, z′ |= (¬Tail∧t(Ψ1))Ut(Ψ2)∧F Tail .
Hence, there is a k such that w, z · z′[..k], z′[k + 1..] |=
t(Ψ2) and for all 0 ≤ i < k, w, z · z′[..i], z′[i + 1..] |=
t(Ψ1)∧¬Tail . By induction, w, z · z′[..k], z′[k+1..] |=
Ψ2 and for all 0 ≤ i < k, w, z · z′[..i], z′[i + 1..] |= Ψ1.
Therefore, w, z, z′ |= Ψ1 U Ψ2.

• Let Φ = Ψ1 R Ψ2 and so tnf(Φ) = (Tail ∨ t(Ψ1)) R
t(Ψ2) ∧ F Tail .
⇒: Suppose w, z, z′ |= Φ. We have two cases: First,
w, z · z′[..i], z′[i + 1..] |= Ψ2 for all i ≤ |z′|. By in-
duction, for each i, w, z · z′[..i], z′[i + 1..] |= tnf(Ψ2)
and so w, z · z′[..i], z′[i + 1..] |= t(Ψ2) ∧ F Tail and
hence w, z, z′ |= (Tail ∨ t(Ψ1))R t(Ψ2). Second, there
is an i such that w, z · z′[..i], z′[i + 1..] |= Ψ1 and
w, z · z′[..j], z′[j + 1..] |= Ψ2 for all j ≤ i. Again by
induction, for this i, w, z · z′[..i], z′[i + 1..] |= tnf(Ψ1)
and w, z · z′[..j], z′[j + 1..] |= tnf(Ψ2) for each j ≤ i.
Therefore, w, z, z′ |= (Tail ∨ t(Ψ1))R t(Ψ2) ∧F Tail .
⇐: Suppose w, z, z′ |= (Tail ∨ t(Ψ1)) R t(Ψ2) ∧
F Tail . Then there is some k ≤ |z′| such that w, z ·
z′[..k], z′[k+ 1..] |= Tail ∨ t(Ψ1) and for all 0 ≤ i ≤ k,
w, z · z′[..i], z′[i + 1..] |= t(Ψ2). Hence, by induction,
w, z · z′[..k], z′[k + 1..] |= Ψ1 and for all 0 ≤ i ≤ k,

w, z · z′[..i], z′[i + 1..] |= Ψ2. Thus, w, z, z′ |= Ψ1 R
Ψ2.

Lemma 10. Letw be a world, Φ an LTLf formula, and z and
z′ traces. Then w, z, z′ |= Φ implies there exists a proposi-
tional assignment P with P |= Φp and w, z, z′ |=

∧

P .

Proof. [Adapted from (Li et al. 2020), Theorem 2]
By structural induction on Φ.

• If Φ is a literal, X , U , or R formula, then P = {Φ} is a
satisfying propositional assignment and w, z, z′ |=

∧

P .
• For Φ = Ψ1 ∧ Ψ2, by induction, there P1 and P2 with
P1 |= Ψp1 and P2 |= Ψp2. Let P = P1 ∪ P2 be a consis-
tent propositional assignment, in which no literal occurs
both positively and negatively. Such a propositional as-
signment must exist because otherwise, w, z, z′ 6|= Φ.
Then P |= Φp and w, z, z′ |=

∧

P .

• For Φ = Ψ1 ∨ Ψ2, we have w, z, z′ |= Ψ1 or w, z, z′ |=
Ψ2. Wlog, w, z, z′ |= Ψ1 and so by induction, there ex-
ists a propositional assignment P1 with P1 |= Ψp1 and
w, z, z′ |=

∧

P1.

Theorem 3. Let Φ be a temporal formula, w a world, and z
and z′ finite traces. Thenw, z, z′ |= Φ iffw, z, z′ |= xnf(Φ).

Proof. By structural induction on Φ.

• If Φ is ⊤,⊥, a C2-fluent sentence, or X Ψ, then
xnf(Φ) = Φ and the claim holds.

• The Boolean cases follow immediately by induction.

• Let Φ = Ψ1 U Ψ2. By semantics of U , w, z, z′ |= Φ
iff w, z, z′ |= Ψ2 or w, z, z′ |= Ψ1 ∧ X (Ψ1 U Ψ2). By
induction, w, z, z′ |= Ψ2 iff w, z, z′ |= xnf(Ψ2) and
w, z, z′ |= Ψ1 ∧ X (Ψ1 U Ψ2) iff w, z, z′ |= xnf(Ψ1) ∧
X (xnf(Ψ1 U Ψ2)) and so the claim follows.

• Let Φ = Ψ1 R Ψ2. By semantics of R, w, z, z′ |= Φ
iff w, z, z′ |= Ψ2 and w, z, z′ |= Ψ1 ∨ X (Ψ1 R Ψ2).
By induction, w, z, z′ |= Ψ2 iff w, z, z′ |= xnf(Ψ2) and
w, z, z′ |= Ψ1 ∨ X (Ψ1 R Ψ2) iff w, z, z′ |= xnf(Ψ1) ∨
X (xnf(Ψ1 RΨ2)) and so the claim follows.

Lemma 11. For any program δ, Cδ is finite, and for
any world w, situation z, and δ′ ∈ sub(δ), it holds
that (1) 〈z, δ′〉 ∈ Fin(w) iff w, z |= ϕ(δ′); and

(2) 〈z, δ′〉
w
−→ 〈z · α, δ′′〉 iff δ′

α:ψ
−−→ δ′′ and w, z |= ψ.

Lemma 12. If every ground action α occurs at most once
among the outgoing edges of every node in Cδ, then δ is
situation-determined.

Proof. [Proof Idea] By induction on the length of traces
starting in 〈z, δ〉, using Lemma 4.

We can show that AΦ
G indeed tracks the program execu-

tions of G:

Lemma 13. Let z = 〈α1, . . . , αn〉 ∈ Z be an arbitrary
trace and G = (D, δ) a Golog program. Then z ∈ ‖δ‖w
for some world w with w |= D iff there is a path s0

α1−→

s1
α2−→ · · ·

αn−−→ sn in A
Φ
G such that s0 is an initial state with

type(s0) = type(w) and sn is a final state.

Proof. We first show by induction on n that 〈〈〉, δ〉
w
−→

〈z[..1], δ1〉
w
−→ · · ·

w
−→ 〈z, ρn〉 in A

Φ
G iff s0

α1−→ s1
α2−→

· · ·
αn−−→ sn in A

Φ
G such that type(s0) = type(w) = τ

and where for every context formula φ ∈ C(G), we have
w, z[..i] |= φ iff (φ,Ei) ∈ type(si).
Let each si be of the form si = (τ, Ei, Ai, ρi).
Base case. n = 0: By definition of AΦ

G , if w |= D, then there
is an initial state s0 with type(s0) = type(w). Also,E0 = ∅
and so (φ,E0) ∈ type(s0) iff w |= φ.

Induction step. By definition, there is a transition si
αi−→

si+1 iff ρi
αi:ψ
−−−→ ρi+1 and (ψ,Ei) ∈ τ . By induction,

(ψ,Ei) ∈ τ iff w, z[..i] |= ψ and with Lemma 4, it follows

that si
αi−→ si+1 iff 〈z[..i], ρi〉

w
−→ 〈z[..i+1], ρi+1〉. By defi-

nition E2 = E1 ⊲ ED(τ, E1, αi) and so, with Theorem 6, for
every φ ∈ C(G), we have (φ,Ei+1) ∈ τ iffw, z[..i+1] |= φ.

Now, by Lemma 4, z ∈ ‖δ‖w iff w, z |= ϕ(δ). From above,
it follows that w, z |= ϕ(δ) iff (ϕ(δ), En) ∈ τ iff sn is fi-
nal.

Regarding the temporal formula Φ, the following two
lemmas show that AΦ

G indeed tracks the satisfaction of Φ:

Lemma 14. Suppose w, 〈〉, z |= Φ with z = 〈α1, . . . , αn〉.

Then there is a path s0
α1−→ s1

α2−→ · · ·
αn−−→ sn in A

Φ
G

starting in an initial state s0 with type(s0) = type(w) such
that si = (τ, Ei, Ai, ρi) and such that for every i ≤ n,
w, z[..i], z[i+ 1..] |=

∧

Ψ∈χi
X Ψ for some (χi, θi) ∈ Ai.

Proof. By induction on i.
Base case. Let i = 0. By Lemma 2, there is a propositional
assignment P0 of xnf(Φ)p with w, 〈〉, z |=

∧

P0 and there-
fore also w, 〈〉, z |=

∧

Ψ∈X(P0)
X Ψ. By definition of AΦ

G ,

(X(P0), θ0) ∈ A0 for some θ0.
Induction step. By induction, w, z[..i − 1], z[i..] |=
∧

Ψ∈χi−1
X Ψ for some (χi−1, θi−1) ∈ Ai−1. Hence,

w, z[..i], z[i+1..] |=
∧

χi−1. By Lemma 2, there is a propo-
sitional assignment Pi of xnf(

∧

χi−1)
p with w, z[..i], z[i+

1..] |=
∧

Pi and hence also w, z[..i], z[i + 1..] |=
∧

Ψ∈X(Pi)
X Ψ. By definition of A

Φ
G , (X(Pi), T (Pi)) ∈

Ai.

Lemma 15. Let s0
α1−→ s1

α2−→ · · ·
αn−−→ sn be a path

in A
Φ
G starting in an initial state s0 with type(s0) =

type(w) and ending in an accepting state sn. Suppose
si = (τ, Ei, Ai, ρi) for each i. Then there is a se-
quence χ0, . . . , χn such that for each i, (χi, θi) ∈ Ai and
w, z[..i], z[i+ 1..] |=

∧

Ψ∈χi
X Ψ.

Proof. By induction on i from n to 0.
Base case. Let i = n. Then sn is accepting and so there
is (χn, θn) ∈ An with θn = ⊤ and χn = ∅. Trivially,
w, z, 〈〉 |=

∧

Ψ∈χn
X Ψ.

Induction step. By induction, there is (χi, θi) ∈ Ai such
that w, z[..i], z[i+ 1..] |=

∧

Ψ∈χi
X Ψ. By definition of AΦ

G ,

there is a propositional assignment Pi of xnf(
∧

χi−1)
p (as

otherwise Ai = ∅) such that X(Pi) = χi, T (Pi) = θi, and

{(ψ,Ei) | ψ ∈ L(Pi)} ⊆ τ . Therefore,w, z[..i], z[i+1..] |=
L(P) ∧ T (P) ∧

∧

Ψ∈χi
X Ψ and so w, z[..i], z[i + 1..] |=

xnf(
∧

χi−1). It directly follows that w, z[..i − 1], z[i...] |=
∧

Ψ∈χi−1
X Ψ. Again by definition of AΦ

G , (χi−1, θi−1) ∈
Ai−1.

Combining the results, we obtain the following theorem:

Theorem 7. Every execution of G = (D, δ) satisfies Φ iff
every reachable final state of AΦ

G is accepting.

Proof.
⇒: By contradiction. Suppose there is a reachable final state

sn = (τ, E,A, ρ) that is not accepting and let s0
α1−→ s1

α2−→

· · ·
αn−−→ sn be a path in A

Φ
G starting in an initial state s0

with type(s0) = type(w) and ending in sn. By Lemma 13,
z = 〈α1, . . . , αn〉 ∈ ‖δ‖w. By assumption, w, 〈〉, z |= Φ
and so, with Lemma 14, w, z, 〈〉 |=

∧

Ψ∈χX Ψ for some

(χ, θ) ∈ A. Clearly, w, z, 〈〉 6|= X Ψ for arbitrary Ψ, and so
χ = ∅. Furthermore, w, z, 〈〉 |= Tail and so θ = ⊤. But
then, sn is accepting, a contradiction.
⇐: By contradiction. Suppose there is a trace z =
〈α1, . . . , αn〉 such that z ∈ ‖δ‖w but w, 〈〉, z 6|= Φ. By

Lemma 13, there is a path s0
α1−→ s1

α2−→ · · ·
αn−−→ sn in

A
Φ
G starting in an initial state s0 with type(s0) = type(w)

and ending in a final state sn. By assumption, sn is ac-
cepting. By Lemma 15, w, 〈〉, z |=

∧

Ψ∈χX Ψ for some

(χ, θ) ∈ A and s0 = (τ, E,A, ρ). By definition, for each
χ ∈ A, there is a propositional assignment P of xnf(

∧

χp)
such that w, 〈〉, z |=

∧

L(P) and χ = X(P). But then,
w, 〈〉, z |= L(P) ∧

∧

Ψ∈X(P) X Ψ and so w, 〈〉, z |= Φ, a

contradiction.

Correction: Definition 5 was missing the following con-
dition in the main paper:
(5) if π(w, z, ρ) = ∅, then 〈z, ρ〉 ∈ Fin(w).

Proposition 16. There is a terminating and winning strategy
σ in A

Φ
G if and only if there exists a terminating policy π for

G that satisfies Φ.

Proof.
⇒: Let σ be a terminating and winning strategy in A

Φ
G . For

a play p = 〈s0, . . . , sn〉 ∈ plays(σ), let Acts(p) denote

the (unique) trace 〈α1, . . . , αn〉 such that s0
α1−→ s1

α2−→

· · ·
αn−−→ sn. We construct π as follows: For every play with

p = 〈s0, . . . , sn〉 ∈ plays(σ) where si = (τ, Ei, Ai, ρi)
(note that by definition, τ is the same for each si) and
Acts(p) = z = 〈α1, . . . , αn〉 and for every world w with
type(w) = τ , we define π(w, z[..i], ρi) = σ(si).
We first show that π is a proper policy for G by showing
that it satisfies the conditions of Definition 5: First, note that
A

Φ
G contains an initial state with s = (τ, ∅, A, δ) for every w

with w |= D and so (1) is satisfied. Also, for every state s,
σ(s) is valid and hence (2) as well as (4) is satisfied. Further-

more, by definition of the strategy, if α ∈ σ(s) and s
α
−→ s′,

then σ is defined on s′ and so π is defined on the correspond-
ing (w, z · α, ρ′) and hence (3) is satisfied. Finally, again
because each σ(s) is valid, (5) is satisfied.

Furthermore, π is terminating and satisfies Φ: From σ be-
ing a terminating strategy, it directly follows that π is ter-
minating. Now, let z ∈ ‖π‖w for some world w. By def-
inition of π, there is a play p = 〈s0, . . . , sn〉 ∈ plays(σ)
with Acts(p) = z for some s0 = (τ, ∅, A0, δ) and with
type(w) = τ . By Lemma 14, there is some (χ, θ) ∈ A0

such that w, 〈〉, z |=
∧

Ψ∈χX Ψ. By definition of AΦ
G , there

is a propositional assignment P such that X(P) = χ,
T (P) = θ, and {(ψ,E) | ψ ∈ L(P)} ⊆ τ . By Theorem 6,
w, z |=

∧

L(P) and so w, 〈〉, z |= Φ.
⇐: Let π be a terminating policy for G that satisfies Φ.
Note that we cannot directly construct a strategy σ from
π as the policy is defined on traces and hence we may
have π(w, z1, ρ) 6= π(w, z2, ρ) even if z1 and z2 corre-
spond to the same state in A

Φ
G . Hence, we define σ on

A
Φ
G as follows: First, for any w and z ∈ ‖π‖w and every

i ≤ |z|, let ρz[..i] be the remaining program after z[..i], i.e.,

〈〈〉, δ〉
w
−→

∗
〈z[..i], ρz[..i]〉. The program expression ρz[..i] is

well-defined because G is situation-determined. Now, sup-
pose s = (τ, E,A, ρ) is a state of AΦ

G , then let Zπs be the set
of traces from an initial state to s that are compatible with π,

i.e., z = 〈α1, . . . , αn〉 ∈ Zs if s0
α1−→ s1

α2−→ · · ·
αn−−→ s

is a path in A
Φ
G where s0 is an initial state and αi+1 ∈

π(w, z[..i], ρz[..i]) for some w with type(w) = τ . If there is

z ∈ ‖π‖w such that z[..i] ∈ Zπs and for all j > i, z[..j] 6∈ Zπs
(i.e., π does not return to s after z[..i]), then we define
σ(s) = π(w, z[..i], ρz[..i]). Otherwise, there must be a cycle
in π that passes through a final and accepting configuration
(as otherwise π would either be non-terminating or not sat-
isfying Φ). Hence, let z ∈ ‖π‖w be the corresponding trace
such that for some i, z[..i] ∈ Zπs , 〈z[..j], ρz[..j]〉 ∈ Fin(w)
for some j > i, and w, 〈〉, z |= Φ and z[..k] 6∈ Zπs for all
i < k < j. We set σ(s) = π(w, z[..i], ρz[..i]) and so σ visits
a final and accepting state before visiting s again.

We first show that σ is a proper strategy for AΦ
G : Clearly,

as π is a proper policy and thus by Definition 5-(1) defined
on every initial configuration, σ is defined on every initial
state of AΦ

G . Second, every σ(s) is valid, because π satisfies
(2), (4), and (5) of Definition 5. Finally, σ is defined on every
σ-reachable state s, as σ follows π and by Definition 5-(3),
π is defined on every successor configuration.

It remains to be shown that σ is winning and terminating.
As A

Φ
G is finite, every infinite path must visit a state twice.

By construction, σ visits a final state before visiting a state s
again. Furthermore, as π is terminating, there must be such
a state with σ(s) ⊆ AE and so σ is terminating. Finally,
by construction, every play p ∈ plays(σ) corresponds to a
trace z ∈ ‖π‖w for some w with w, 〈〉, z |= Φ. Let s =
(τ, E,A, ρ) be the last state of p. By Lemma 14, there is
(χ, θ) ∈ A such that w, z, 〈〉 |=

∧

Ψ∈χX Ψ. However, by

the semantics of temporal formulas, this is only possible if
χ = ∅ and θ = ⊤. Hence, s is accepting and so every p ∈
plays(σ) is winning. As every play is winning, σ is winning.

Theorem 9. Algorithm 1 terminates and returns a winning
and terminating strategy if one exists.

Proof. It is easy to see that Algorithm 1 terminates: Note
that a state s is only added to Q if one of its successors is
added to R or if it is in Q initially. As there are only finitely
many states in S, only finitely many states can be added to
Q, and hence Q is eventually empty. Finally, again because
S is finite, there can only be finitely many hypothesesH .
We continue by showing each returned strategy is win-
ning and terminating: Assume Algorithm 1 returns a strat-
egy σ that is not winning. Then there is a play p =
〈s0, s1, . . . , sn〉 ∈ plays(σ) that is not winning, i.e., end-
ing in a state sn that is final but not accepting. Clearly, sn is
only added to R if every environment successor is in G, or
if there is a control successor in G. As the play ends in sn,
σ(sn) ⊆ AE and so every environment successor of sn is in
G. However, as sn is final but non-accepting, by line 6, sn
is not added to G and hence also not to R, contradicting the
assumption.
Now, assume σ is non-terminating. Then there is an infi-
nite sequence of σ-compatible states s0, s1, . . . such that for
some i, every state sj for j ≥ i is non-final or σ(sj)∩AC 6=
∅. As initially G only consists of final and accepting states,

it is easy to see that for every j, α ∈ σ(sj) and sj
α
−→ sj+1

implies that sj+1 is closer to some final and accepting state
than sj . As there are only finitely many states in S, for every
j, there must be a k ≥ j such that sk is final and accepting.
Finally, by line 11, σ(sk) ⊆ AE , contradicting the assump-
tion.
Finally, we show that the algorithm is complete. Assume σ
is a winning and terminating strategy but Algorithm 1 does
not return a winning and terminating strategy. First, from
above, it directly follows that it returns ⊥ (as any strategy
returned is in fact winning and terminating). Now, let H
be the final and accepting states that are visited by σ. We
define a distance d(s) as the maximal number of steps to
reach a final and accepting state from s in any play of σ, i.e.,
d(s) = max{j | p0, . . . , pi, s, s1, . . . sj ∈ plays(σ), sj ∈
H, ∀i < j : si 6∈ H}. Clearly, d(s) is defined and finite for
all initial states s and all states in H , as otherwise σ would
not be winning. We can now show by induction on d(s) that
every state s visited by σ is added to G. The base case is
trivial. For the induction step, let s be a state with d(s) = n
and assume that every state s′ with d(s′) < n is in G. As
σ is winning, for every s ∈ SuccE(s), there is an action

α ∈ σ(s) such that s
α
−→ s′. By definition, d(s′) < n and so

s′ ∈ G. If SuccE(s) = ∅, there must be an action α ∈ AC

with α ∈ σ(s). Again, for every s′ ∈ SuccC(s), d(s
′) < n

and so s′ ∈ G. By line 8, s is added to G. Hence, after the
while loop terminates, H ∪ S ⊆ R and so the algorithm
returns some strategy, a contradiction.

C Experiments

All experiments were conducted on an Intel® Core™ i5-
7300U @2.60GHz with 8GB of RAM, running Debian 10
with WSL2 under Windows 10, using SWI-Prolog 9.3.2 and
version 2.0 of the E theorem prover.

Dishwasher Robot The first domain is inspired by the
dishwasher robot example used in (Claßen et al. 2014), but
adds additional fluents. A robot can move between a num-

ber of rooms and the kitchen, load (an arbitrary number of)
dirty dishes onto itself, and unload dishes it carries into the
dishwasher. The environment has actions that represent used
dishes being placed in arbitrary rooms. Every dish can only
be used once in this fashion. The basic action theory, pro-
gram, and temporal specification are specified below.

Initial situation:

Dish(x) ≡ (x = d1 ∨ x = d2)

Room(x) ≡ (x = r1 ∨ x = r2)

∀x.At(x) ≡ x = kitchen

∀x.New(x) ≡ Dish(x) ∧ ∀y.¬DirtyDish(x, y) ∧ ¬OnRobot(x)

OnRobot(x) ⊃ Dish(x) ∧ ¬∃yDirtyDish(x, y)

DirtyDish(x, y) ⊃ Dish(x) ∧ Room(y) ∧ ¬OnRobot(x)

Precondition axioms:

�Poss(a) ≡ ∃x, y. a = load(x, y) ∧DirtyDish(x, y) ∧ At(y)

∨ ∃x. a = unload(x) ∧ OnRobot(x) ∧ At(kitchen)

∨ ∃x, y. a = requestDDR(x, y) ∧ New(x) ∧ Room(y)

∨ ∃x. a = goto(x) ∧ Room(x) ∨ x = kitchen

Successor state axioms:

�[a]DirtyDish(x, y) ≡ a = requestDDR(x, y)

∨DirtyDish(x, y) ∧ a 6= load(x, y)

�[a]OnRobot(x) ≡ ∃y. a = load(x, y)

∨OnRobot(x) ∧ a 6= unload(x)

�[a]New (x) ≡ New (x) ∧ ¬∃y. a = requestDDR(x, y)

�[a]At(x) ≡ a = goto(x) ∨At(x) ∧ ¬∃y.a = goto(y)

Program: The program is shown in Algorithm 2. It is to
be understood as being precondition extended, i.e., an under-
lined action α stands for Poss(α)?;α. For better readability,
δ∗ is written as loop δ end loop.

Algorithm 2: The program for the dishwasher robot.

loop
while ∃x.OnRobot(x) do πx : {d1, d2}. unload(x)

πy : {r1, r2}. goto(y);

while ∃x.DirtyDish(x, y) do πx : {d1, d2}. load(x, y)

goto(kitchen)

‖
loop πx : {d1, d2}, y : {r1, r2}. requestDDR(x, y)

Specification: F G ¬∃x, y.DirtyDish(x, y)

Results: Table 1 presents the results of the experiments on
the dishwasher domain, where R and D denote the number of
rooms and dishes, respectively, Nodes (TS) and Edges (TS)
are the number of nodes and edges of the resulting transition
system, Time is the time in milliseconds it took to complete
the algorithm (with a timeout of 1200 seconds), and Nodes
(St) and Edges (St) are the number of nodes and edges of
the found strategy. As expected, the size of transition sys-
tem, and the time needed to construct it, grows with addi-
tional rooms or dishes. Interestingly, the number of dishes
has a bigger impact than the number of rooms. Intuitively,

R D Nodes (TS) Edges (TS) Time [ms] Nodes (St) Edges (St)

1 1 29 32 1679 20 23
1 2 167 221 14784 138 187
1 3 n/a n/a – n/a n/a
2 1 126 193 7531 97 121
2 2 1340 2266 1011815 1183 1720
2 3 n/a n/a – n/a n/a
3 1 524 930 97438 439 571
3 2 n/a n/a – n/a n/a

Table 1: Evaluation Results for the Dish Robot Domain

this is because the program contains more choices for dishes
than for rooms, which are furthermore nested inside inner
loops. Accordingly, adding one more dish results in a more
significant blow-up than adding a room.

Warehouse Robot The second domain is a warehouse
robot, adapted from an example in (Claßen and Zarrieß
2017). Here, the robot can move boxes from one shelf of
a warehouse to another. The boxes may contain an unknown
number of objects, and it is unknown whether and which ob-
jects are fragile. Accidentally (i.e., due to the environment’s
choice), the robot may drop a box, breaking all fragile ob-
jects in it, unless the box contains bubble wrap. The robot
has the option to put bubble wrap into a box.

Initial situation:

∀x. Shelf (x) ≡ (x = s1 ∨ x = s2)

∀x.Box (x) ≡ (x = b1 ∨ x = b2)

∀x. ∃y. In(x, y) ⊃ ¬Shelf (x) ∧ ¬Box (x)

∃x.Wrap(x)

∀x.¬Broken(x) ∧ ¬Holding(x)

RAt(s1) ∧ ∀x.Box (x) ⊃ At(x, s1)

∀x, y, z. (In(x, y) ∧At(y, z)) ⊃ At(x, z)

∀y. y 6= s1 ⊃ ¬RAt(y) ∧ ∀x.¬At(x, y)

∀x, y. In(x, y) ⊃ ¬Wrap(x)

Precondition axioms:

�Poss(a) ≡

∃x, y. a = pick (x, y) ∧ At(x, y) ∧ RAt(y)

∨ ∃x, l. a = move(x, y) ∧ RAt(x) ∧ Shelf (y)

∨ ∃x, y. a = put(x, y) ∧ Holding(x) ∧RAt(y)

∨ ∃x. a = addWrap(x) ∧ ∃y.RAt(y) ∧ At(x, y)

∨ ∃x. a = drop(x) ∧Holding(x)

B Nodes (TS) Edges (TS) Time [ms] Nodes (St) Edges (St)

1 60 60 3523 43 52
2 3069 3255 1344308 2016 2411
3 n/a n/a – n/a n/a

Table 2: Evaluation Results for the Warehouse Robot Do-
main

Successor state axioms:

�[a]RAt(y) ≡ ∃x. a = move(x, y)

∨RAt(y) ∧ ¬∃z.a = move(y, z)

�[a]At(x, y) ≡ ∃z[a = move(z, y) ∧

∃v(Holding(v) ∧ (v = x ∨ In(x, v)))]

∨At(x, y) ∧ ¬∃z[a = move(z, y) ∧

∃v(Holding(v) ∧ (v = x ∨ In(x, v)))]

�[a]Holding(x) ≡ ∃y. a = pick (x, y)

∨Holding(x) ∧ ¬∃y. a = put(x, y)

�[a]Broken(x) ≡ ∃y. a = drop(y) ∧ In(x, y) ∧ Fragile(x)

∧ ¬∃z. In(z, y) ∧Wrap(z) ∨ Broken(x)

�[a]In(x, y) ≡ a = addWrap(y) ∧Wrap(x) ∨ In(x, y)

Algorithm 3: The program for the warehouse robot.

loop
πl0, l1 : {s1, s2, s3}.

[

move(l0, l1)
?

πb : {b1, b2, b3}.
(

wrap(b)?; pick (b, s1); drop(b)
?;

πl2 : {s1, s2, s3}.move(l1, l2); put(b, l2)
)]

Program: The program for the warehouse robot is shown
in Algorithm 3. The notation δ? stands for an optional exe-
cution of δ, and is formally defined as δ? =̇ (δ | nil). Note
that the choice for putting bubble wrap is up to the robot, but
that of the box getting dropped is due to the environment.

Specification: F ∀o. In(o, b1) ⊃ ¬Broken(o)∧At(o, s2)

Results: Table 2 presents the results of the experiments
on the warehouse robot domain, where B denotes the num-
ber of boxes, and the other columns are as before. As can
be seen, the method struggles more with this domain than
the previous one, which is due to several reasons. For one,
the successor state axioms for the warehouse robot actually
exploit the expressivity of the class of acyclic theories more
than do the ones for the dishwasher robot. Note that the dish-
washer BAT actually falls into the class of local-effect theo-
ries (Liu and Lakemeyer 2009), a subset of acyclic theories
where regression works much simpler (i.e., does not intro-
duce additional quantifiers), and consequently results in less
complex formulas. Moreover, the warehouse robot suffers
from the same problem that causes the Gripper domain to
be a challenge in classical planning: There is a number of

objects, each of which has to be handled in the same way.
For solving the task, the order in which objects are handled
is hence irrelevant, yet the system considers all possible per-
mutations, resulting in a blow-up. The problem is amplified
by the fact that handling a single box in this domain is a
slightly complex task in itself, containing a sequence of ac-
tions with several choice points. An interesting avenue for
future work would be to improve our method to be able to
detect and deal with symmetries of this kind.

