
Strategy Synthesis for

First-Order Agent Programs over Finite Traces

Till Hofmann1 and Jens Claßen2

1 RWTH Aachen University, Germany
till.hofmann@cs.rwth-aachen.de

2 Roskilde University, Denmark
classen@ruc.dk

In this work,1 we consider the task of synthesizing an execution strategy for an agent from
a high-level description of the initial state of the world, the actions available to the agent,
a control program, and a temporal goal. In particular, we look at the case of infinite-state
systems with unbounded object domains, based on a specification formalism with first-order
expressiveness, as well as exogenous events, triggered by the non-deterministic environment.
More specifically, we use the agent programming language Golog [11]. Golog in turn is based
on the situation calculus [13, 15], a first-order logic formalism for reasoning about change. Here,
a situation calculus action theory (perhaps incompletely) describes the initial state of the world,
together with the preconditions and effects of primitive actions at the agent’s disposal, while
Golog programs then combine primitive actions into more complex behaviours using sequence,
iteration, non-deterministic branching, and concurrency [5]. Since both imperative and non-
deterministic program constructs are included, this allows for combining programming and
planning in a flexible manner.

As an example, adapted from [3], consider a robot that has to clean dirty dishes. It can
move between a number of different rooms and the kitchen, load (an arbitrary number of) dirty
dishes onto itself located in specific rooms, and unload dishes it carries into the dishwasher in
the kitchen. Here we use a modal variant of the situation calculus called ES [10], where these
actions would be represented through functions goto(x), load(x, y), and unload(x), respectively,
whereas properties that change due to actions are encoded by fluent predicates such as At(x)
or OnRobot(x). An action theory D = D0 ∪ Dpre ∪ Dpost then consists of three parts:

1. The initial theory D0 is a finite set of axioms that encodes what is true initially. For
example, the robot might be in the kitchen, and not carry any dirty dishes yet:

At(kitchen) ∧ ¬∃xOnRobot(x)

2. The precondition axiom Dpre states when each action a can be executed in terms of
the special fluent Poss(a). For instance, the robot can unload a dirty dish x into the
dishwasher iff it is currently carrying x and it is located in the kitchen (the modal operator
2 expresses that the subformula is true now and after any sequence of actions; free variable
x is understood as implicitly ∀-quantified from the outside):

2Poss(unload(x)) ≡ OnRobot(x) ∧At(kitchen)

3. The successor state axioms (SSAs) Dpost express the changes to fluents’ values due to
actions. For example, the robot will hold dish x after action a just in case a was the
action of loading x from room y, or the robot was already holding x previously and a was
not the action of unloading x (the modal operator [a] reads as “after action a”):

□[a]OnRobot(x) ≡ ∃y. a = load(x, y) ∨OnRobot(x) ∧ a ̸= unload(x)
1This paper gives an overview. A full version with all formal details is available at [8].



Strategy Synthesis for FO Agent Programs over Finite Traces Hofmann and Claßen

Given such a theory, a Golog program for the robot could be the following:

loop:
while ∃x.OnRobot(x) do πx : {d1, . . . , dm}. unload(x);
πy : {r1, . . . , rn}. goto(y);
while ∃x.DirtyDish(x, y) do πx : {d1, . . . , dm}. load(x, y);
goto(kitchen)

That is to say, the agent is instructed to iterate (loop) a subprogram where in each cycle, it
first performs a loop to unload any dishes it is holding into the dishwasher. Afterwards, it
chooses a room to move to, where it loads up all dirty dishes (if any) in another loop. Finally,
it moves back to the kitchen. Here, π operators denote a finitary non-deterministic choice of
argument; e.g., πx : {d1, . . . , dm} means “choose some x from among dishes d1, . . . , dm”, where
each di is an ES constant.

The program thus defines a general structure for the robot’s course of action, but leaves
certain choices open, such as what room to go next to. Typically, it is assumed that the agent
is in complete control, i.e., that all such non-determinism is “angelic”. More recently, different
forms of “demonic” non-determinism have been studied [4, 2], where actions have outcomes that
are determined by the environment. For example, we might have another program running in
parallel that occasionally triggers an action to place some new dirty dish x into some room y
(to simulate a dynamic environment with people that use the dishes):

loop: πx : {d1, . . . , dm}, y : {r1, . . . , rn}.newDish(x, y)

Here we are particularly interested in scenarios where agent and environment do not act in
turns, as is often assumed, but where they more realistically may act in arbitrary order, similar
to supervisory control [14]. In this setting, program realization becomes a synthesis task. The
goal is to determine a policy that executes the program, while also satisfying a temporal goal,
independent of and reacting to all possible environment behaviors. Temporal formulas are
expressed in terms of LTLf, a restriction of Linear Temporal Logic (LTL) to finite traces [6].
For example, we may want to require that eventually (F) there will always (G) be no more
dirty dish:

F G ¬∃x, y.DirtyDish(x, y) (1)

The Golog language provides a large degree of expressiveness, in particular in terms of first-
order quantification, allowing to represent infinite-state systems over unbounded domains. The
synthesis problem is thus highly undecidable in general. In this work, we present a decidable
approach that works on a non-trivial fragment. Specifically, exploiting results on decidable
verification of Golog [17], we require that

• all non-modal subformulas fall into the (decidable) two-variable fragment of first-order
logic with counting quantifiers [7],

• the non-deterministic choice of action arguments π only ranges over finite sets, and

• dependencies among fluent predicates in successor state axioms satisfy a certain acyclicity
criterion.

We can then construct an abstract, finite “game arena” (a special form of transition system)
that captures all possible program executions while also tracking the satisfaction of the tem-
poral specification. Using an encoding of LTLf formulas that interprets temporal formulas as
propositional atoms [12], the construction works on-the-fly and avoids building irrelevant parts.

2



Strategy Synthesis for FO Agent Programs over Finite Traces Hofmann and Claßen

0 3goto(r)

1✓ 4✓unload(d)

2✓

5✓goto(r)

6

newDish(d,r)

7✓load(d,r)

8✓goto(r)

9✓
goto(kit)

10
newDish(d,r)

goto(r)

11✓goto(kit)

12✓
goto(kit)

goto(r)
13newDish(d,r)

14✓load(d,r)

15✓unload(d)

goto(r)

goto(r)

16✓goto(kit)

17✓goto(r)

18✓unload(d)

19✓goto(kit)

20✓goto(r)

goto(r)

21✓goto(kit)
goto(r)

Figure 1: Example game arena with single room r and single dish d. Left are initial states with
one new dish and none on robot (0), no new dish and one on robot (1), and no new dish and
none on robot (2). Double circles indicate final states where program execution may terminate.
Check marks indicate accepting states where the temporal goal is completed.

A game-theoretic approach can then be applied to synthesize a policy. Figure 1 shows an ex-
ample game arena for the dishwasher robot if there is only one room r and one dish d, but
where the initial state is underspecified so that the dish may initially be in the room, on the
robot, or neither.

We implemented the method for the Golog interpreter vergo [1], which uses embedded the-
orem provers [16, 9] for first-order reasoning tasks and a first-order variant of binary decision
diagrams for concisely representing formulas. We did an experimental evaluation on the dish-
washer robot domain as well as a domain with a warehouse robot that moves boxes which may
fall non-deterministically and break their contents. In the experiment, we varied the overall
numbers of dishes, rooms, and boxes, and measured the method’s runtime as well as the size
of the resulting game arenas and extracted strategies. The set time-out of 1500 seconds was
reached quickly for instances with 3 or more rooms, 3 or more dishes, and 3 or more boxes,
yielding game arenas up to around 3000 states and transitions. Note that although decidable,
the problem is very hard: In the worst case, the number of states in the abstract game arena
is double exponential in the size of the input, and computing them involves consistency checks
over sets of formulas that take up to double exponential time.

While the experiments thus demonstrate that the method works in principle, they also point
out possible avenues of future work in terms of possible improvements. In particular, Golog
programs often contain symmetries in the sense that there is a number of objects each of which
need to be handled independently in the same way (e.g., the dishes in our example). For solving
the task, the order of handling objects is hence irrelevant, yet the current method materializes
all possible permutations, resulting in a severe blow-up of the size of the abstract transition
system. It may therefore be interesting to study how the approach can be adapted to detect
and deal with symmetries of this kind. Another limitation is the restriction that the π operator
ranges over finite sets only. It can be shown that dropping this constraint altogether quickly
results in undecidability, but the condition seems very harsh in light of the fact that non-finitary
quantification is allowed in other places such as the action theory or the temporal goal. We are
therefore interested in identifying perhaps “softer” restrictions that still guarantee decidability,
yet allow for picking action arguments from potentially infinite sets.

3



Strategy Synthesis for FO Agent Programs over Finite Traces Hofmann and Claßen

References

[1] Jens Claßen. Symbolic verification of Golog programs with first-order BDDs. In Michael Thielscher,
Francesca Toni, and Frank Wolter, editors, Proceedings of the Sixteenth International Conference
on the Principles of Knowledge Representation and Reasoning (KR 2018), pages 524–529. AAAI
Press, 2018.

[2] Jens Claßen and James P. Delgrande. An Account of Intensional and Extensional Actions, and its
Application to Belief, Nondeterministic Actions and Fallible Sensors. In Proceedings of the Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR), volume 18,
pages 194–204, September 2021.

[3] Jens Claßen, Martin Liebenberg, Gerhard Lakemeyer, and Benjamin Zarrieß. Exploring the bound-
aries of decidable verification of non-terminating Golog programs. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI), pages 1012–1019. AAAI Press, 2014.

[4] Giuseppe De Giacomo and Yves Lespérance. The nondeterministic situation calculus. In Proceed-
ings of the International Conference on Principles of Knowledge Representation and Reasoning
(KR), volume 18, pages 216–226. AAAI Press, September 2021.

[5] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence, 121:109–169, 2000.

[6] Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for LTL and LDL on Finite Traces. In
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pages
1558–1564. AAAI Press, 2015.

[7] Erich Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In Proceedings
of Twelfth Annual IEEE Symposium on Logic in Computer Science (LICS), pages 306–317, June
1997.

[8] Till Hofmann and Jens Claßen. LTLf synthesis on first-order action theories, 2024.
arXiv:2410.00726.

[9] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, Proceedings of the Twentyfifth International Conference on
Computer Aided Verification (CAV 2013), volume 8044 of Lecture Notes in Computer Science,
pages 1–35. Springer, 2013.

[10] Gerhard Lakemeyer and Hector J. Levesque. A semantic characterization of a useful fragment of
the situation calculus with knowledge. Artificial Intelligence, 175(1):142–164, 2010.

[11] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming,
31(1-3):59–83, 1997.

[12] Jianwen Li, Geguang Pu, Yueling Zhang, Moshe Y. Vardi, and Kristin Y. Rozier. SAT-based
explicit LTLf satisfiability checking. Artificial Intelligence, 289:103369, December 2020.

[13] John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. Machine Intelligence, 4:463–502, 1969.

[14] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proceedings of the
IEEE, 77(1):81–98, January 1989.

[15] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, 2001.

[16] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher, stronger: E 2.3. In
Pascal Fontaine, editor, Proceedings of the Twenty-Seventh International Conference on Automated
Deduction (CADE 2019), volume 11716 of Lecture Notes in Computer Science, pages 495–507.
Springer, 2019.

[17] Benjamin Zarrieß and Jens Claßen. Decidable verification of Golog programs over non-local effect
actions. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pages
1109–1115. AAAI Press, 2016.

4


	References

