
LTLf Synthesis on First-Order Agent Programs in Nondeterministic Environments

Till Hofmann1, Jens Claßen2

1Department of Computer Science, RWTH Aachen University
2Institute for People and Technology, Roskilde University

till.hofmann@cs.rwth-aachen.de, classen@ruc.dk

Abstract

We investigate the synthesis of policies for high-level agent
programs expressed in Golog, a language based on situ-
ation calculus that incorporates nondeterministic program-
ming constructs. Unlike traditional approaches for program
realization that assume full agent control or rely on incremen-
tal search, we address scenarios where environmental non-
determinism significantly influences program outcomes. Our
synthesis problem involves deriving a policy that successfully
realizes a given Golog program while ensuring the satisfac-
tion of a temporal specification, expressed in Linear Temporal
Logic on finite traces (LTLf), across all possible environmen-
tal behaviors. By leveraging an expressive class of first-order
action theories, we construct a finite game arena that encap-
sulates program executions and tracks the satisfaction of the
temporal goal. A game-theoretic approach is employed to de-
rive such a policy. Experimental results demonstrate this ap-
proach’s feasibility in domains with unbounded objects and
non-local effects. This work bridges agent programming and
temporal logic synthesis, providing a framework for robust
agent behavior in nondeterministic environments.

1 Introduction
Agents operating in dynamic environments often need to
react to changes beyond their control. For example, a ser-
vice robot may be tasked with serving coffee to customers,
who may place an order at any time. Also, some actions
may have unexpected outcomes, e.g., while attempting to
fulfill the task, the robot might accidentally drop the cof-
fee. Such scenarios can be modeled as fully observable non-
deterministic (FOND) planning tasks (Geffner and Bonet
2013; Ghallab, Nau, and Traverso 2016) where actions have
multiple possible outcomes, or as reactive synthesis prob-
lem (e.g., based on LTL on finite traces (LTLf) (De Gia-
como and Vardi 2015)), where certain propositions are con-
trolled by the agent while others are governed by the envi-
ronment. However, these approaches have some limitations.
They assume a fixed, finite set of propositions, effectively
imposing a closed-world assumption and requiring a com-
pletely known initial state. Furthermore, they rely on al-
ternating actions between the agent and the environment,
which fails to capture scenarios where the environment may

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

perform an arbitrary number of actions before the agent can
respond. Additionally, existing solutions often generate ar-
bitrary plans or policies without incorporating user-specified
partial strategies unless explicitly encoded in the specifica-
tion.

On the other hand, GOLOG (Levesque et al. 1997), a
well-established agent programming language, offers signif-
icant flexibility. Based on the situation calculus (McCarthy
and Hayes 1969; Reiter 2001a), GOLOG supports first-order
reasoning over arbitrarily large or even infinite domains
and accommodates incomplete information about the initial
state. It also allows for the specification of partial strate-
gies through nondeterministic programs. Given such a pro-
gram, program realization is the task of resolving program
nondeterminism to produce a successful program execution,
e.g., by means of search, or in an online incremental fash-
ion (De Giacomo et al. 2009). However, it is typically as-
sumed that the agent is in complete control, even if it only
has incomplete knowledge (Reiter 2001b; Claßen and Neuss
2016) or its actions are stochastic (Boutilier et al. 2000). Re-
cently, the situation calculus has been extended with non-
deterministic actions (De Giacomo and Lespérance 2021;
Claßen and Delgrande 2021) similar to FOND planning,
where the environment chooses an outcome. However, this
still assumes that agent and environment act in turns.

To address these limitations, we propose an extension to
GOLOG that partitions actions into agent actions and envi-
ronment actions. In this framework, the agent selects among
currently applicable agent actions, guided by the program
and the basic action theory, but cannot constrain the envi-
ronment. The environment may select any applicable envi-
ronment action or any action chosen by the agent. This al-
lows for arbitrary sequences of environment actions, similar
to the supervisory control paradigm (Ramadge and Wonham
1989). We also propose to describe the agent’s goal as a tem-
poral formula, which allows for formulating trajectory con-
straints such as safety and reachability on the program.

In this setting, program realization becomes a synthesis
task. Given a GOLOG program and a temporal goal, the task
is to synthesize a policy that executes the program while sat-
isfying the temporal goal, independent of and reacting to all
possible environment behaviors. In this paper, we focus on
the decidable fragment of GOLOG with acyclic basic action
theories restricted to C2 (Zarrieß and Claßen 2016) and tem-

poral goals given as LTLf formulas (De Giacomo and Vardi
2013). We provide a decidable approach for this problem
by constructing a finite game arena that captures all possi-
ble program executions while tracking the satisfaction of the
temporal specification, and then applying a game-theoretic
approach to synthesize a policy. Exploiting an encoding of
LTLf formulas that interprets temporal formulas as proposi-
tional atoms (Li et al. 2020), the construction works on-the-
fly and avoids building irrelevant parts.

The remainder of this paper is structured as follows. After
discussing related work in Section 2, we summarize GOLOG
and introduce LTLf in the context of GOLOG programs in
Section 3. We describe the synthesis approach in Section 4
and evaluate it experimentally in Section 5, before conclud-
ing in Section 6.

2 Related Work
Verification of GOLOG programs has been explored in var-
ious contexts. Initially, verification efforts relied on man-
ual proofs (De Giacomo, Ternovska, and Reiter 1997; Liu
2002; Shapiro, Lespérance, and Levesque 2002). Claßen and
Lakemeyer (2008) describe a (possibly not terminating) sys-
tem that is capable of automatically verifying properties of
non-terminating GOLOG programs. Later research identified
decidable fragments of GOLOG grounded in C2, the decid-
able two-variable fragment of first-order logic with count-
ing (Grädel, Otto, and Rosen 1997). Verification of GOLOG
programs with context-free or local-effect basic action theo-
ries (BATs) in C2 and with pick operators restricted to finite
domains is decidable for properties in CTL (Claßen et al.
2014), LTL (Zarrieß and Claßen 2014a), and CTL* (Zarrieß
and Claßen 2014b). Beyond local-effect BATs, verification
remains decidable if the BAT is acyclic, i.e., there is no
cyclic dependency between fluents in the effect descriptors,
or flat, i.e., effect descriptors are quantifier-free (Zarrieß and
Claßen 2016). Bounded theories, where the number of ob-
jects described by any situation is bounded, also results in
decidable verification (De Giacomo, Lespérance, and Patrizi
2016). All these approaches rely on a finite abstraction of
the infinite program configuration space, which yields decid-
ability, and hence could be used as basis for our approach.

Related to verification is synthesis of temporal properties,
which can be described as two-player games between the
system and the environment (Abadi, Lamport, and Wolper
1989; Pnueli and Rosner 1989). Given a specification, e.g.,
in Linear Temporal Logic (LTL), and a partition of the sym-
bols into controllable and uncontrollable ones, the players
alternate selecting a subset of their symbols. LTL has also
been used to describe temporally extended goals for plan-
ning (Bacchus and Kabanza 1998; De Giacomo and Vardi
2000; Geffner and Bonet 2013), possibly resulting in infi-
nite plans (Patrizi et al. 2011). LTL can also be used to spec-
ify conformant planning problems with temporally extended
goals (Calvanese, De Giacomo, and Vardi 2002) and syn-
thesis is related to FOND planning (Camacho et al. 2017,
2018; De Giacomo and Rubin 2018) as a nondeterminis-
tic effect can be seen as an environment action. Moreover,
there has been a particular interest in LTLf (De Giacomo
and Vardi 2013), where the synthesis problem can be solved

by transforming the LTLf specification into a finite automa-
ton (De Giacomo and Vardi 2015). Like LTL, LTLf synthe-
sis is 2EXPTIME-complete, although LTLf synthesis tools
usually perform better. Recently, several methods have been
proposed to improve the performance of LTLf synthesis,
e.g., based on BDDs (Zhu et al. 2017) and on-the-fly forward
search (Xiao et al. 2021; De Giacomo et al. 2022; Favorito
2023).

3 Preliminaries
We describe the logic ES and an ES-based variant of GOLOG
and then introduce LTLf in the context of GOLOG programs.

The Logic ES
The logic ES (Lakemeyer and Levesque 2010) is a first-order
modal variant of the situation calculus. Following (Zarrieß
and Claßen 2016), we consider ES formulas restricted to C2.

Syntax Terms are of sort object or action. We use x, y, . . .
(possibly with decorations) to denote object variables, and a
for a variable of sort action. NO is a countably infinite set
of object constant symbols, and NA a countably infinite set
of action function symbols whose arguments are all of sort
object. Let NO denote the set of all ground terms (called
standard names) of sort object, and NA those of sort ac-
tion. Formulas are constructed over equality atoms and flu-
ent predicates with at most two arguments of sort object,
using the usual Boolean connectives, quantifiers, counting
quantifiers, as well as modalities □ϕ (“ϕ holds after any se-
quence of actions”), and [t]ϕ (“ϕ holds after executing action
t”). We call a formula fluent if it does not mention □ or [·].
A sentence is a formula without free variables. A C2-fluent
formula is a fluent formula without actions and with at most
two variables.

Semantics A trace is a finite sequence of action stan-
dard names. When a trace represents a history of already
executed actions, it is called a situation. For a trace z =
⟨α1, . . . , αn⟩ ∈ Z , we write |z| for the length n of z, z · α
for the concatenation ⟨α1, . . . , αn, α⟩ of z with an action α,
z[i] for the ith action αi, z[..i] for the prefix ⟨α1, . . . , αi⟩,
and z[i..] for the suffix ⟨αi, . . . , αn⟩. Let Z = N ∗

A be the
set of all traces, and PF the set of all primitive formulas
F (n1, ..., nk), where F is a k-ary fluent with 0 ≤ k ≤ 2 and
the ni are object standard names. A world w maps primitive
formulas and situations to truth values, i.e., w : PF × Z →
{0, 1}. The set of all worlds is denoted by W .

Definition 1 (Truth of Formulas). Let w ∈ W be a world
and α an action standard name. We define for every z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;
2. w, z |= (n1 = n2) iff n1 and n2 are identical;
3. w, z |= ϕ1 ∧ ϕ2 iff w, z |= ϕ1 and w, z |= ϕ2;
4. w, z |= ¬ϕ iff w, z ̸|= ϕ;
5. w, z |= ∀x.ϕ iff w, z |= ϕxn for every n ∈ Nx;
6. w, z |= ∃≤mx.ϕ iff |{n ∈ Nx | w, z |= ϕxn}| ≤ m;
7. w, z |= ∃≥mx.ϕ iff |{n ∈ Nx | w, z |= ϕxn}| ≥ m;
8. w, z |= □ϕ iff w, z · z′ |= ϕ for every z ∈ Z;
9. w, z |= [α]ϕ iff w, z · α |= ϕ.

Here, Nx refers to the set of all standard names of the
same sort as x, and ϕxn the result of simultaneously replacing
all free occurrences of x in ϕ by n. We understand ∨, ∃, ⊃,
≡, ⊤ and ⊥ as the usual abbreviations. For a set of sentences
Σ and a sentence α, we write Σ |= α (read: Σ entails α) to
mean that for every w, if w, ⟨⟩ |= α′ for every α′ ∈ Σ, then
w, ⟨⟩ |= α. Finally, we write |= α (read: α is valid) to mean
{} |= α. Note that rule 2 above includes a unique names
assumption for actions and objects into the semantics.

Basic Action Theories
To encode a dynamic domain, we employ a basic action
theory (BAT) (Reiter 2001a) with additional restrictions
(Zarrieß and Claßen 2016) for ensuring decidability:
Definition 2 (Basic Action Theory). A basic action theory
(BAT) D = D0 ∪ Dpost is a set of axioms, where D0 is a
finite set of C2-fluent sentences describing the initial state of
the world, and Dpost is a finite set of successor state axioms
(SSAs), one for each fluent, of the form1 □[a]F (x⃗) ≡ γ+F ∨
F (x⃗)∧¬γ−F , where the positive effect condition γ+F and the
negative effect condition γ−F are disjunctions of formulas of
the form ∃y⃗. (a = A(v⃗) ∧ ε ∧ κ) such that
• the free variables of the formula ∃y⃗. (a = A(v⃗) ∧ ε ∧ κ)

are among x⃗ and a,
• A(v⃗) is an action term and v⃗ contains y⃗,
• the effect descriptor ε is a fluent formula with no terms of

sort action and the number of variables in ε that do not
occur in v⃗ or occur bound in ε is less than or equal to
two,

• the context condition κ is a fluent formula with free vari-
ables among v⃗, no terms of sort action, and at most two
bound variables.

Intuitively, the effect descriptor is the part of the effect con-
dition that expresses which objects are affected, while the
context condition encodes whether the effect takes place.

Acyclic BATs For a BAT D, we can construct the fluent
dependency graph ∆D, which captures the dependencies be-
tween fluents in the effect descriptors. In ∆D, each node is
a fluent of D and there is a directed edge (F, F ′) from fluent
F to fluent F ′ if there exists a disjunct ∃y⃗.(a = A(v⃗)∧ε∧κ)
in γ+F or γ−F such that F ′ occurs in ε. A BAT is acyclic if ∆D
is acyclic. Furthermore, the fluent depth of an acyclic BAT,
denoted by fd(D), is the length of the longest path in ∆D
and the fluent depth of F w.r.t. D, denoted by fdD(F), is the
length of the longest path in ∆D starting in F .

GOLOG Programs
We consider a set of program expressions that includes
ground actions (α), tests for C2-fluent sentences (ϕ?), se-
quence of subprograms (δ1; δ2), nondeterministic choice
(δ1|δ2), interleaved concurrent execution (δ1||δ2), and non-
deterministic iteration (δ∗). We write nil =̇ ⊤? for the empty
program that always succeeds.

1The operator □ has lowest precedence while [·] has highest
precedence and free variables are implicitly assumed to be univer-
sally quantified from the outside.

A GOLOG program G = (D, δ) consists of a C2-BAT D =
D0 ∪ Dpost and a program expression δ, where all fluents
occurring in D and δ have a SSA in Dpost. For a program
G = (D, δ), we write AG for all action terms occurring in δ
and we may omit the subscript if G is clear from context.

The semantics of GOLOG programs is based on transitions
between configurations, where a configuration ⟨z, ρ⟩ con-
sists of a sequence of already performed actions z ∈ Z and
the remaining program ρ ∈ sub(δ). Given a world w ∈ W ,
the transition relation w−→ among configurations is defined
inductively. The set of final configurations Fin(w) defines
the configurations where the program may terminate.
Definition 3 (Program Transition Semantics). For any
world w, the set of final configurations Fin(w) is the small-
est set such that

⟨z, ϕ?⟩ ∈ Fin(w) if w, z |= ϕ

⟨z, δ1; δ2⟩ ∈ Fin(w) if ⟨z, δ1⟩ ∈ Fin(w) and ⟨z, δ2⟩ ∈ Fin(w)

⟨z, δ1|δ2⟩ ∈ Fin(w) if ⟨z, δ1⟩ ∈ Fin(w) or ⟨z, δ2⟩ ∈ Fin(w)

⟨z, δ1||δ2⟩ ∈ Fin(w) if ⟨z, δ1⟩ ∈ Fin(w) and ⟨z, δ2⟩ ∈ Fin(w)

⟨z, δ∗⟩ ∈ Fin(w)

For any world w, the transition relation w−→ among config-
urations is the least set satisfying

⟨z, α⟩ w−→ ⟨z · α, nil⟩ if α is a ground action

⟨z, δ1; δ2⟩
w−→ ⟨z′, ρ; δ2⟩ if ⟨z, δ1⟩

w−→ ⟨z′, ρ⟩

⟨z, δ1; δ2⟩
w−→ ⟨z′, ρ⟩ if ⟨z, δ1⟩ ∈ Fin(w) and ⟨z, δ2⟩

w−→ ⟨z′, ρ⟩

⟨z, δ1|δ2⟩
w−→ ⟨z′, ρ⟩ if ⟨z, δ1⟩

w−→ ⟨z′, ρ⟩ or ⟨z, δ2⟩
w−→ ⟨z′, ρ⟩

⟨z, δ1||δ2⟩
w−→ ⟨z′, ρ||δ2⟩ if ⟨z, δ1⟩

w−→ ⟨z′, ρ⟩

⟨z, δ1||δ2⟩
w−→ ⟨z′, δ1||ρ⟩ if ⟨z, δ2⟩

w−→ ⟨z′, ρ⟩

⟨z, δ∗⟩ w−→ ⟨z′, ρ; δ∗⟩ if ⟨z, δ⟩ w−→ ⟨z′, ρ⟩

We write ∥δ∥zw for the set of traces starting in configura-
tion ⟨z, δ⟩ and ending in a final configuration.

Situation-Determined Programs Following (De Gia-
como, Lespérance, and Muise 2012), we say that a program
G = (D, δ) is situation-determined, iff for all w ∈ W with
w |= D, all z, z′ ∈ Z , and all program expressions δ′, δ′′:
⟨z, δ⟩ w−→

∗
⟨z′, δ′⟩ and ⟨z, δ⟩ w−→

∗
⟨z′, δ′′⟩ implies δ′ = δ′′.

We assume that all programs are situation-determined.

LTLf
For temporal properties, we define temporal formulas with
the same syntax as LTLf formulas, but replacing proposi-
tions with C2-fluent sentences ϕ, i.e., Φ ::= ϕ | Φ ∧ Φ |
X Φ | Φ U Φ. For a temporal formula Φ, we denote the set
of subformulas of Φ with cl(Φ). For a set of formulas Ψ, we
write

∧
Ψ for

∧
Φ∈Ψ Φ. As usual, we define F Φ =̇ ⊤ U Φ

and G Φ =̇ ¬F ¬Φ, as well as Φ1 ∨ Φ2 =̇ ¬(¬Φ1 ∧ ¬Φ2),
N Φ =̇ ¬X ¬Φ, and Φ1 R Φ2 =̇ ¬(¬Φ1 U ¬Φ2). We de-
fine the truth of a temporal formula Φ, given a world w and
traces z, z′:
• w, z, z′ |= ϕ iff w, z |= ϕ,
• w, z, z′ |= Φ1 ∧ Φ2 iff w, z, z′ |= Φ1 and w, z, z′ |= Φ2,
• w, z, z′ |= X Φ iff z′ = α · z′′ ̸= ⟨⟩ and w, z ·α, z′′ |= Φ,

• w, z, z′ |= Φ1 U Φ2 iff there exists k ≤ |z′| such that
w, z · z′[..k], z′[k + 1..] |= Φ2 and for all 0 ≤ i < k,
w, z · z′[..i], z′[i+ 1..] |= Φ1.

TNF and XNF As we intend to track the satisfiability
of the temporal formula Φ over the traces of the program,
we adapt Tail Normal Form (TNF) and neXt Normal Form
(XNF) from (Li et al. 2020). TNF explicitly marks the end of
satisfying traces, while XNF allows us to split the temporal
formula into a local part, which can be evaluated at the cur-
rent state, and a future part, which is evaluated against the re-
maining trace. First, we say a formula is in Negated Normal
Form (NNF) if all negations are in front of only atoms. Each
LTLf formula can be transformed into NNF by using the dual
operators to push negation inwards. Based on NNF, we de-
fine TNF, which marks the last state of satisfying traces:
Definition 4. Let Φ be an LTLf formula in NNF. Its TNF
tnf(Φ) is defined as t(Φ) ∧ F Tail , where Tail is a new
atom to identify the last state of satisfying traces and t(Φ) is
an LTLf formula defined recursively as follows:

1. t(Φ) = Φ if Φ is ⊤,⊥, or a C2-fluent sentence;
2. t(X (Ψ)) = ¬Tail ∧ X (t(Ψ));
3. t(N (Ψ)) = Tail ∨ X (t(Ψ));
4. t(Φ1 ∧ Φ2) = t(Φ1) ∧ t(Φ2);
5. t(Φ1 ∨ Φ2) = t(Φ1) ∨ t(Φ2);
6. t(Φ1 U Φ2) = (¬Tail ∧ t(Φ1)) U t(Φ2);
7. t(Φ1 R Φ2) = (Tail ∨ t(Φ1))R t(Φ2).

When interpreting a TNF formula over a trace, Tail needs
to be treated separately, as it is not a fluent sentence. We
define: w, z, z′ |= Tail iff z′ = ⟨⟩. It can be shown that Φ
and tnf(Φ) are equivalent:2

Theorem 1. Let Φ be a temporal formula, w a world, and z
and z′ traces. Then w, z, z′ |= Φ iff w, z, z′ |= tnf(Φ).

In the following, each LTLf formula is assumed to be in
TNF and we may omit the common part F Tail .

We continue by interpreting temporal formulas as propo-
sitional formulas by treating sub-formulas with a tem-
poral operator as outermost connective as if they were
propositional atoms. For a temporal formula Φ, we de-
fine the set of propositional atoms PA(Φ) of Φ induc-
tively: (1) PA(Φ) = {Φ} if Φ is an atom, X , U , or
R formula; (2) PA(Φ) = PA(Ψ) if Φ = ¬Ψ; and
(3) PA(Φ) = PA(Φ1) ∪ PA(Φ2) if Φ = Φ1 ∧ Φ2 or
Φ = Φ1 ∨ Φ2. For a temporal formula Φ, let Φp be
Φ understood as a propositional formula over PA(Φ). A
propositional assignment P of Φp is a partial function P :
PA(Φ) → {0, 1} that assigns truth values to the proposi-
tional atoms PA(Φ). We write P |= Φp if P satisfies Φp.
A propositional assignment P can also be understood as a
set of literals {p ∈ PA(Φ) | P (p) = 1} ∪ {¬p ∈ PA(Φ) |
P (p) = 0} and we use P to denote both interchangeably.

If Φ is satisfiable, then there exists a corresponding propo-
sitional assignment:
Lemma 2. Let w be a world, Φ an LTLf formula, and z and
z′ traces. Then w, z, z′ |= Φ implies there exists a proposi-
tional assignment P with P |= Φp and w, z, z′ |=

∧
P .

2Proofs can be found in (Hofmann and Claßen 2024).

The converse is not necessarily true: Let Φ = X (a) ∧
X (¬a). Clearly, Φ is not satisfiable, but {X (a),X (¬a)} is
a satisfying propositional assignment of Φp.

We now define XNF, where each U and R operator is
pushed inwards such that the only outermost temporal con-
nective is X :
Definition 5. Let Φ be a temporal formula. Its neXt Normal
Form (XNF) xnf(Φ) is defined recursively as follows:

1. xnf(Φ) = Φ if Φ is ⊤,⊥, a C2-fluent sentence, or X Ψ;
2. xnf(Φ1 ∧ Φ2) = xnf(Φ1) ∧ xnf(Φ2);
3. xnf(Φ1 ∨ Φ2) = xnf(Φ1) ∨ xnf(Φ2);
4. xnf(Φ1 U Φ2) = xnf(Φ2) ∨ (xnf(Φ1) ∧ X (Φ1 U Φ2));
5. xnf(Φ1 R Φ2) = xnf(Φ2) ∧ (xnf(Φ1) ∨ X (Φ1 R Φ2)).

It can be shown that Φ and xnf(Φ) are equivalent:
Theorem 3. Let Φ be a temporal formula, w a world, and z
and z′ finite traces. Thenw, z, z′ |= Φ iffw, z, z′ |= xnf(Φ).

For a propositional assignment P of Φp in XNF, we de-
fine L(P) = {l | l ∈ P is a literal other than (¬)Tail },
X(P) = {θ | X θ ∈ P}, and T (P) = ⊤ if Tail ∈ P and
T (P) = ⊥ otherwise.

XNF allows us to track the partial satisfaction of a tempo-
ral formula over a trace. After each action, we will determine
each satisfying assignment P such that L(P) is satisfied by
the current state and we will track X(P) in the remaining
trace. We will use this in the following to construct a game
arena that tracks the satisfaction of a temporal formula Φ.

4 Approach
Our goal is to determine an execution of a given GOLOG pro-
gram that satisfies the given temporal formula, for all possi-
ble environment behaviors. The controller must determine
which actions to execute; more specifically, which branch to
follow in all nondeterministic choices of the program, while
not restricting the environment in its actions. Formally, our
goal is to find a successful policy, defined as follows:
Definition 6 (Policy). Let G = (D, δ) be a GOLOG program
and A = AC∪̇AE a partition of the actions A of G into
controllable and environment actions. A policy is a partial
mapping π : W ×Z × sub(δ) → 2A such that:

1. if w |= D, then π is defined on (w, ⟨⟩, δ);
2. if α ∈ π(w, z, ρ), then ⟨z, ρ⟩ w−→ ⟨z · α, ρ′⟩ for some
ρ′ ∈ sub(δ);

3. if α ∈ π(w, z, ρ) and ⟨z, ρ⟩ w−→ ⟨z · α, ρ′⟩, then π is
defined on (w, z · α, ρ′);

4. if α ∈ AE and ⟨z, ρ⟩ w−→ ⟨z ·α, ρ′⟩ for some ρ′ ∈ sub(δ),
then α ∈ π(w, z, ρ);

5. if π(w, z, ρ) = ∅, then ⟨z, ρ⟩ ∈ Fin(w).

Intuitively, a policy chooses a subset π(w, z, ρ) from all
possible actions in the current configuration ⟨z, ρ⟩ and world
w. From this subset, the environment then chooses one ac-
tion to be executed. The agent’s choices are restricted: Ev-
ery possible environment action must be selected, hence the
agent can never limit the environment’s choices.

A policy π induces a set of traces ∥π∥w in world w,
where z = ⟨α1, . . . , αn⟩ ∈ ∥π∥w if there are ρ1, . . . , ρn

such that (1) ⟨⟨⟩, δ⟩ w−→ ⟨z[..1], ρ1⟩
w−→ · · · w−→ ⟨z, ρn⟩;

(2) αi+1 ∈ π(w, z[..i], ρi); and (3) π(w, z, ρn) ⊆ AE and
⟨z, ρn⟩ ∈ Fin(w). Hence, the environment may choose to
terminate the execution if ⟨z, ρ⟩ is a final configuration and
the agent chose no further actions to execute. Note that by
definition, a policy is a restriction of the program execu-
tion, i.e., ∥π∥w ⊆ ∥δ∥w. We call a policy terminating if
for every infinite sequence of π-compatible configurations
⟨⟨⟩, δ⟩, ⟨z1, ρ1⟩, ⟨z2, ρ2⟩, . . . and for every i, there is a j ≥ i
such that π(w, zj , ρj) ⊆ AE and ⟨zj , ρj⟩ ∈ Fin(w). In-
tuitively, a terminating policy ensures that at any point of
the execution trace, there is some future final configuration
where the policy does not choose any agent actions and
hence the environment may terminate. A policy may still
result in an infinite trace if the environment continues to se-
lect actions indefinitely. However, we exclude those from
consideration as we assume that the environment eventually
stops. We can now formalize our goal:

Definition 7 (Synthesis Problem). Given a GOLOG program
G = (D, δ) and a temporal formula Φ, find a terminating
policy π for G that satisfies Φ, i.e., for every world w with
w |= D and every z ∈ ∥π∥w, it holds that w, ⟨⟩, z |= Φ.

We note that it is in general undecidable to determine
whether a satisfying policy exists. In (Zarrieß and Claßen
2014a, 2016) it was shown that the related verification prob-
lem (a special case of the synthesis problem) becomes decid-
able if (1) C2 is used as base logic, (2) successor state axioms
are acyclic, and (3) “pick operators” are disallowed, i.e., all
actions in the program are ground. Furthermore, dropping
any of these three restrictions while maintaining the other
two immediately leads to undecidability: for (1) this is due
to the undecidability of FOL, and for (2) and (3) due to the
possibility of reducing the halting problem for Turing ma-
chines to the verification problem.

In the following, applying the same three restrictions, we
describe a sound and complete method for determining a ter-
minating policy π that satisfies Φ. We will do so by con-
structing a finite game arena AΦ

G that captures the possi-
ble program executions while tracking the satisfaction of Φ.
Once we have constructed AΦ

G , we can use a game-theoretic
approach to determine a terminating policy that satisfies Φ.
However, as both the number of worlds satisfying D and the
number of reachable program configurations is generally in-
finite, we first need to construct a finite abstraction based on
characteristic graphs and types.

Characteristic Graphs
Characteristic graphs (Claßen and Lakemeyer 2008) pro-
vide a finite encoding of the reachable program configura-
tions. In such a graph, the nodes correspond to programs ρ,
intuitively representing what remains to be executed, while

an edge ρ
α:ψ−−→ ρ′ encodes that a transition is possible from ρ

to ρ′ through action α, if formula ψ holds. In addition, each
program ρ has an associated termination condition φ(ρ), in
the form of a fluent formula.

Definition 8 (Characteristic Graph). Given a program ex-
pression δ, the termination condition φ(δ) of δ is a fluent

formula inductively defined as follows:

φ(α) = ⊥ if α is a ground action φ(ϕ?) = ϕ

φ(δ1; δ2) = φ(δ1) ∧ φ(δ2) φ(δ1|δ2) = φ(δ1) ∨ φ(δ2)

φ(δ1||δ2) = φ(δ1) ∧ φ(δ2) φ(δ∗) = ⊤

For any program expression δ, the set of outgoing edges

δ
α:ψ−−→ ρ with action α and guard condition ψ to resulting

program ρ is defined inductively as follows:

• α α:⊤−−→ nil, if α is a primitive action;

• (δ1; δ2)
α:ψ−−→ (ρ; δ2), if δ1

α:ψ−−→ ρ;

• (δ1; δ2)
α:φ(δ1)∧ψ−−−−−−−→ ρ, if δ2

α:ψ−−→ ρ;

• (δ1|δ2)
α:ψ−−→ ρ, if δ1

α:ψ−−→ ρ or δ2
α:ψ−−→ ρ;

• (δ1||δ2)
α:ψ−−→ (ρ||δ2), if δ1

α:ψ−−→ ρ;

• (δ1||δ2)
α:ψ−−→ (δ1||ρ), if δ2

α:ψ−−→ ρ;

• δ∗
α:ψ−−→ (ρ; δ∗), if δ

α:ψ−−→ ρ.
For any program expression δ, the corresponding character-
istic graph is given by Cδ = ⟨v0, V, E⟩, where v0 = δ (initial
node), and the nodes V and edges E are the smallest sets

such that (1) δ ∈ V ; and (2) if δ′ ∈ V and δ′
α:ψ−−→ δ′′, then

δ′′ ∈ V and δ′
α:ψ−−→ δ′′ ∈ E.

We denote the set V with sub(δ), the subprograms reach-
able from δ. We note (Claßen and Lakemeyer 2008):
Lemma 4. For any program δ, Cδ is finite, and for
any world w, situation z, and δ′ ∈ sub(δ), it holds
that (1) ⟨z, δ′⟩ ∈ Fin(w) iff w, z |= φ(δ′); and

(2) ⟨z, δ′⟩ w−→ ⟨z · α, δ′′⟩ iff δ′
α:ψ−−→ δ′′ and w, z |= ψ.

Characteristic graphs therefore exactly capture the pro-
gram transition semantics. We can hence use them as finite
abstractions of the reachable program configurations. Also,
using characteristic graphs, there is a (simple to test) suffi-
cient condition for programs being situation-determined:
Lemma 5. If every ground action α occurs at most once
among the outgoing edges of every node in Cδ , then δ is
situation-determined.

Types
With characteristic graphs, we already have a finite repre-
sentation of the possible program configurations. However,
there are additional sources of infiniteness. For one, dur-
ing the execution of a program, we may accumulate in-
finitely many effects. Second, there are infinitely many pos-
sible worlds that satisfy the BAT D. However, for acyclic
BATs, it has been shown that the set of possible effects is
finite, and that the set of worlds that satisfy D can be repre-
sented by a finite set of equivalence classes, so-called types
of worlds (Zarrieß and Claßen 2016). We will now describe
how to construct types for a given BAT D.

As our programs may only mention finitely many ground
actions, we can rewrite the SSAs of an acyclic BAT by
grounding the effects. This is done by replacing each SSA
for a fluent F (x⃗) by a set of instantiated formulas, one for
each α ∈ A, of the form □[α]F (x⃗) ≡ (γ+F)

a
α ∨ F (x⃗) ∧

¬(γ−F)aα. As each γ±F is a disjunction of formulas of the
form ∃y⃗.(a = A(v⃗) ∧ ϵ ∧ κ), the resulting positive effect
condition (γ+F)

a
α is equivalent to a disjunction of the form

ϵ1∧κ1∨. . .∨ϵn∧κn, which allows us to write (γ+F)
a
α as a set

of pairs (γ+F)
a
α =

∨
i{(ϵi, κi)}i. We write (ϵ, κ) ∈ (γ+F)

a
α

if (ϵ, κ) occurs in the disjunction (analogously for (γ−F)
a
α).

For a fluent F , the set of positive effect descriptors is then
defined as eff+

A(F) := {ε | (ε, κ) ∈ (γ+F)
a
α for some α ∈

A}, and similarly for negative effect descriptors eff−
A(F).

Hence, we can write a set of effects E as a set of pairs
E = {⟨F±

i , εi⟩}i, where εi ∈ eff+
A(F) or εi ∈ eff−

A(F).
We define a variant of regression on such a set of effects:

Definition 9 (Regression). Let E be a set of effects and φ a
C2 fluent formula. The regression of φ through E, denoted
by R[E,φ] is a C2 fluent formula obtained from φ by re-
placing each occurrence of a fluent F (v⃗) in φ by the formula
F (v⃗) ∧

∧
⟨F−,ε⟩∈E ¬εx⃗v⃗ ∨

∨
⟨F+,ε⟩∈E ε

x⃗
v⃗ .

Furthermore, in an acyclic BAT, the effect descriptor ε of
a fluent F with fd(F) = i may only mention fluents with
depth strictly smaller than i. Thus, when regressing the ef-
fect descriptor ε of a fluent F with fd(F) = i, only effects
on fluents with depth strictly smaller than i are relevant.
Hence, for a GOLOG program G = (D, δ) with an acyclic
BAT D, there are only finitely many possible effects that
can be generated by action sequences from A. We denote
the set of all relevant effects on all fluents with depth ≤ j

with j = 0, . . . , fd(D) by ED,A
j , and define it as follows:

ED,A
0 =̇ {⟨F±, ε⟩ | fdD(F) = 0, ε ∈ eff−

A(F) ∪ eff+
A(F)}

ED,A
i =̇ ED,A

i−1

∪ {⟨F−,R[E, ε]⟩ | fdD(F) = i, ε ∈ eff−
A(F),E ⊆ ED,A

i−1 }

∪ {⟨F+,Ξ⟩ | fdD(F) = i, ϕ ∈ eff+
A(F),E ⊆ ED,A

i−1 ,

X ⊆ eff−
A(F)× 2

E
D,A
i−1 }

with Ξ =̇
(
R[E, ϕ] ∧

∧
(ε,E′)∈X

¬R[E′, ε]
)

ED,A =̇ ED,A
n with fd(D) = n

Additionally, we define the context of a program C(G) as
the set of relevant C2-fluent sentences that occur in the ini-
tial theory, in context conditions of the instantiated SSAs,
in guards and termination conditions of the characteristic
graph, and in the temporal formula, and we ensure that the
context is closed under negation. We can now define types:

Definition 10 (Type of a world). Let G = (D, δ) be a
GOLOG program with an acyclic BAT D = D0 ∪Dpost w.r.t.
a finite set of ground actions A. Furthermore, let C(G) be
the context of G and ED,A the set of all relevant effects. The
set of all type elements is given by TE(G) =̇ {(ψ,E) | ψ ∈
C(G), E ⊆ ED,A}. A type w.r.t. G is a set τ ⊆ TE(G) that
satisfies:

1. For all ψ ∈ C(G) and all E ⊆ ED,A it holds that either
(ψ,E) ∈ τ or (¬ψ,E) ∈ τ ;

2. There exists a world w ∈ W such that w |= D0 ∪
{R[E,ψ] | (ψ,E) ∈ τ}.

The set of all types w.r.t. G is denoted by Types(G). The type
of a world w ∈ W w.r.t. G is given by type(w) =̇ {(ψ,E) ∈
TE(G) | w |= R[E,ψ]}.
Definition 11. Let τ ∈ Types(G), E ⊆ ED,A, and α ∈ A.
The effects of executing α in (τ, E) are given by

ED(τ, E, α) =̇ {⟨F+, ε⟩ | ∃(ε, κ) ∈
(
γ+
F

)
a
α s.t. (κ,E) ∈ τ} ∪

{⟨F−, ε⟩ | ∃(ε, κ) ∈
(
γ−
F

)
a
α s.t. (κ,E) ∈ τ}

Definition 12. Let φ be a C2 fluent formula and E0 and E1

two sets of effects. The accumulation E0 ▷ E1 of E0 and E1

is defined as follows:

E0 ▷ E1 =̇ {⟨F±,R[E0, φ]⟩ | ⟨F±, φ⟩ ∈ E1}

∪ {⟨F+, (φ ∧
∧

⟨F−,φ⟩∈E1

¬R[E0, φ
′])⟩ | ⟨F+, φ⟩ ∈ E0} ∪ {⟨F−, φ⟩ ∈ E0}

Let w be a world with w |= D, type(w) = τ , and
z = ⟨α1, . . . , αn⟩ a trace. We define E0 =̇ ∅ and Ei =̇
Ei−1 ▷ ED(τ, E, α) for 1 ≤ i ≤ n. We also write Ez for the
effect En that is generated by executing z = ⟨α1, . . . , αn⟩
in w. The following theorem shows the correctness of the
construction (Zarrieß and Claßen 2016):
Theorem 6. Let G = (D, δ) be a GOLOG program, w a
world with w |= D, and z ∈ A∗ a trace. Then w, z |= ϕ iff
(ϕ,Ez) ∈ type(w).

Hence, types provide a finite representation of the worlds
satisfying D and all effects that can be generated by δ.

Game Arena
With types, characteristic graphs, and XNF formulas, we can
define a game arena AΦ

G that captures the possible executions
of a program G while tracking the satisfaction of Φ:
Definition 13. Let G = (D, δ) be a GOLOG program
and Φ a temporal formula. The game arena AΦ

G =
(S,S0,→,SF ,SA) for G and Φ is defined as follows:
• Each state s ∈ S is of the form s = (τ, E,A, ρ) where

1. τ ∈ Types(G);
2. ρ ∈ sub(δ) is a node of the characteristic graph;
3. E ⊆ ED,A;
4. A = {(χi, θi)}i, where χi ⊆ cl(Φ), θi ∈ {⊤,⊥}.

• A state s = (τ, E,A, ρ) is an initial state s ∈ S0 if
1. τ = type(w) for some w with w |= D;
2. ρ = δ is the initial program expression;
3. E = ∅;
4. (χ, θ) ∈ A iff there is a propositional assignment P

of xnf(Φ)p such that {(ψ,E) | ψ ∈ L(P)} ⊆ τ ,
χ = X(P), and θ = T (P).

• There is a transition s1
α−→ s2 from s1 = (τ, E1, A1, ρ1)

to s2 = (τ, E2, A2, ρ2) if

1. there is an edge ρ1
α:ψ−−→ ρ2 in Cδ with (ψ,E1) ∈ τ ;

2. E2 = E1 ▷ ED(τ, E1, α);
3. (χ2, θ2) ∈ A2 if there is a propositional assignment
P of xnf(

∧
χp1) for some (χ1, θ1) ∈ A1 such that

(1) θ1 = ⊥, (2) {(ψ,E2) | ψ ∈ L(P)} ⊆ τ ,
(3) χ2 = X(P), and (4) θ2 = T (P).

A state s = (τ, E,A, ρ) is final if (φ(ρ), E) ∈ τ and accept-
ing if (∅,⊤) ∈ A. We denote the set of all final states with
SF and the set of all accepting states with SA. We also write
type(s) = τ for the type of the world in s.

Each state consists of (1) a type τ , representing an equiv-
alence class of worlds; (2) a node ρ from the characteristic
graph, capturing the remaining program and its termination
condition; (3) a set of accumulated effects E; and (4) a set
of temporal formulas A, which must be satisfied in the re-
maining execution to fulfill the specification Φ. The initial
states are those states with the initial program expression and
no accumulated effects. Furthermore, regarding the temporal
formula Φ and A of an initial state, we first compute all the
propositional assignments of xnf(Φ)p. For each assignment
P , we check whether the local part L(P) is satisfied by the
state. If so, the pair (χ, θ) = (X(P), T (P)) is added to A,
which intuitively states that χ must be satisfied in the future
and the program should terminate if θ is true. For transitions,
we first check whether there is an edge in the characteristic
graph that allows the execution of the next action. If so, we
accumulate the effects and check whether there is a proposi-
tional assignment of xnf(

∧
χp1) for some (χ1, θ1) ∈ A1 that

allows the satisfaction of the temporal formulas in A2. Sim-
ilar to the initial states, we do so by checking whether the
local part L(P) is satisfied by the current state and tracking
X(P) and T (P) in the future.

By definition, a state is final if the program may terminate
and it is accepting if Φ is satisfied. Also note that AΦ

G is
finite as both types and reachable sub-programs are finite.
It is also deterministic, as G is situation-determined and for
action successors, the satisfying assignments of xnf(Φ)p are
collected in a single successor state.

We can show that AΦ
G indeed corresponds to the execu-

tions of G while tracking the satisfaction of Φ:
Theorem 7. Every execution of G = (D, δ) satisfies Φ iff
every reachable final state of AΦ

G is accepting.
This provides us a decidable method for verifying an LTLf

property Φ against a GOLOG program G. However, the goal
is to determine a policy that executes G while satisfying Φ.

Synthesis
Above, we have described a finite game arena AΦ

G that cap-
tures the executions of a program G while tracking the sat-
isfaction of a given LTLf formula Φ. In the following, we
use a game-theoretic approach on AΦ

G to determine a policy
that successfully executes G while satisfying Φ. We do so by
defining a game between two players, the system and the en-
vironment, that play on AΦ

G . We start by defining a strategy,
which intuitively translates the conditions on a policy to the
game arena AΦ

G :

Definition 14 (Strategy). Let AΦ
G be the game arena for

some GOLOG program G and temporal formula Φ. Let s ∈ S
be a state of AΦ

G . A set of actions U ⊆ A is valid in s under
the following conditions:

1. if α ∈ U , then there is an edge s α−→ s′ for some s′ ∈ S
2. if s α−→ s′ for some α ∈ AE and s′ ∈ S, then α ∈ U
3. if U = ∅, then s is a final state

Algorithm 1: Computing a strategy from AΦ
G

1: for all H ∈ 2SF∩SA do
2: G← H; R← {s ∈ G | SuccE(s) = ∅}; σ ← ∅
3: Q← {s ∈ S | Succ(s) ∩G ̸= ∅}
4: while Q ̸= ∅ do
5: s← POP(Q)
6: if s ∈ SF \ SA ∧ SuccC(s) = ∅ then continue
7: if s ∈ R then continue
8: if SuccE(s) ̸= ∅ ∧ ∀s′ ∈ SuccE(s) : s′ ∈ G ∨

SuccE(s) = ∅ ∧ ∃s′ ∈ SuccC(s) : s
′ ∈ G then

9: G← G ∪ {s}; R← R ∪ {s}
10: if s ∈ SF ∩ SA then
11: σ(s)← {α | ∃s′ ∈ SuccE(s). s

α−→ s′}
12: else σ(s)← {α | ∃s′ ∈ G. s

α−→ s′}
13: Q← Q ∪ {s′ | s ∈ Succ(s′)}
14: if H ∪ S0 ⊆ R then return σ

A strategy in AΦ
G is a partial function σ : S → 2A such that:

1. σ is defined on every initial state of AΦ
G

2. if σ is defined on s ∈ S, then σ(s) is valid in s
3. if σ is defined on s ∈ S , α ∈ σ(s), and s α−→ s′ for some
s′ ∈ S, then σ is defined on s′

We also write s σ−→ s′ if there is α ∈ σ(s) such that s α−→ s′.
A strategy σ induces a set of plays plays(σ), which are those
paths in AΦ

G consistent with σ. Formally, p = ⟨s0, . . . , sn⟩ ∈
plays(σ) if
1. s0 is an initial state of AΦ

G
2. for each i, si

σ−→ si+1

3. σ(sn) ⊆ AE and sn is a final state of AΦ
G

A play is winning if it ends in an accepting state. A strategy
σ is winning if every play p ∈ plays(σ) is winning. We call a
strategy σ terminating if for every infinite sequence of states
s0, s1, . . .with sk

σ−→ sk+1 for every k, it holds that for every
i, there is a j ≥ i such that σ(sj) ⊆ AE and sj is final.

Proposition 8. There is a terminating and winning strategy
σ in AΦ

G if and only if there exists a terminating policy π for
G that satisfies Φ.

Hence, we need to determine a terminating and winning
strategy in AΦ

G . In principle, this can be done with back-
ward search starting in a set of good states and then checking
whether the agent can force every play to end in a good state.
However, not every final and accepting state is necessarily
good, as the environment may force a play from this state
that ends in a non-accepting state. On the other hand, every
winning play must end in an accepting state, so if a strategy
exists, there must be an enforceable set of final and accepting
states. Hence, we can guess which final and accepting states
are enforceable and then check if there is indeed a strategy
that can force every play to end in those states.

This approach is formalized in Algorithm 1. It starts with
a hypothesis H ⊆ SF ∩ SA of good states G and tracks
the states R that can reach G. It then iteratively checks the
predecessors of all states in G whether the agent can force
the play to end in G. This is the case if all environment suc-
cessors SuccE(s) are in G or if there is a control successor

SuccC(s) in G. If a state is found that can be forced to end
in G, it is added to G and R and σ are updated accordingly.
Finally, if all states of H and all initial states S0 can in fact
reach G, then σ is a winning and terminating strategy:

Theorem 9. Algorithm 1 terminates and returns a winning
and terminating strategy if one exists.

5 Experiments
We implemented the method (Claßen and Hofmann 2025) in
the Prolog-based Golog interpreter vergo (Claßen 2018),
that, different from other implementations, uses full FOL
as base logic, where an embedded theorem prover (Schulz,
Cruanes, and Vukmirovic 2019) is used for reasoning tasks
such as deciding entailment and consistency. The system
contains optimizations for handling FO expressions, in par-
ticular an FO variant of binary decision diagrams. We eval-
uated the method on two domains, a dishwasher robot and
a warehouse robot, that we will be described in detail be-
low. All experiments were conducted on an Intel® Core™
i5-7300U @2.60GHz with 8GB of RAM, running Debian
12 with WSL2 under Windows 10, using SWI-Prolog 9.0.4
and version 3.2 of the E theorem prover.

Incremental Construction
In our implementation, the construction of the abstract game
arena follows closely Definition 13. However, the construc-
tion is done in an incremental fashion, where only the rel-
evant and reachable parts are actually materialized. This is
achieved by keeping the types as general as possible, and
only including additional formulas once they are needed.
More specifically, the method works by iterating the follow-
ing steps, until no more changes occur:

Initialize: Create initial states (τ, ∅, A, δ), where types τ
are constructed only from formulas in D0 and literals L(P)
of propositional assignments over A.
Split: If there is a state (τ, E,A, ρ) that does not entail a
truth value for some required conditionψ (the transition con-
dition for an action α, the termination condition φ(ρ), the
condition κ of an effect, or a literal l ∈ L(P) of a propo-
sitional assignment over A), then create two copies of all
states and transitions, where one includes ψ and the other
includes ¬ψ into τ , discarding states with inconsistent τ .
Expand: If a state s = (τ, E,A, ρ) admits an action α, cre-
ate the successor state s′ and the transition s α−→ s′.

We represent τ directly by the regressed versions of formu-
las to avoid having to regress them repeatedly. The construc-
tion also stops in states where A = ∅, since the correspond-
ing traces can never satisfy the input property.

Dishwasher Robot
The first domain is inspired by the dishwasher robot example
used in (Claßen et al. 2014), but adds additional fluents. A
robot can move between a number of rooms and the kitchen,
load (an arbitrary number of) dirty dishes onto itself, and un-
load dishes it carries into the dishwasher. The environment

Algorithm 2: The program for the dishwasher robot
loop

while ∃x.OnRobot(x) do πx : {d1, d2}. unload(x)
πy : {r1, r2}. goto(y);
while ∃x.DirtyDish(x, y) do πx : {d1, d2}. load(x, y)
goto(kitchen)

∥
loop πx : {d1, d2}, y : {r1, r2}. addDish(x, y)

R D Nodes (TS) Edges (TS) Nodes (St) Edges (St) Time [s]
1 1 22 25 16 19 2.6
1 2 150 203 128 176 155.4
1 3 – – – – –
2 1 109 168 87 110 69.0
2 2 – – – – –
3 1 483 857 413 543 1885.7
3 2 – – – – –

Table 1: Evaluation Results for the Dish Robot Domain

has actions that represent used dishes being placed in arbi-
trary rooms. Every dish can only be used once in this fash-
ion. The basic action theory, program, and temporal specifi-
cation are specified below.

Initial situation:
Dish(x) ≡ (x = d1 ∨ x = d2), Room(x) ≡ (x = r1 ∨ x = r2)

∀x.At(x) ≡ x = kitchen

∀x.New(x) ≡ Dish(x) ∧ ∀y.¬DirtyDish(x, y) ∧ ¬OnRobot(x)

OnRobot(x) ⊃ Dish(x) ∧ ¬∃yDirtyDish(x, y)

DirtyDish(x, y) ⊃ Dish(x) ∧ Room(y) ∧ ¬OnRobot(x)

Precondition axioms:
□Poss(load(x, y)) ≡ DirtyDish(x, y) ∧At(y)

□Poss(unload(x)) ≡ OnRobot(x) ∧At(kitchen)

□Poss(addDish(x, y)) ≡ New(x) ∧ Room(y)

□Poss(goto(x)) ≡ Room(x) ∨ x = kitchen

Successor state axioms:
□[a]DirtyDish(x, y) ≡ a = addDish(x, y)

∨DirtyDish(x, y) ∧ a ̸= load(x, y)

□[a]OnRobot(x) ≡ ∃y. a = load(x, y)

∨OnRobot(x) ∧ a ̸= unload(x)

□[a]New(x) ≡ New(x) ∧ ¬∃y. a = addDish(x, y)

□[a]At(x) ≡ a = goto(x) ∨At(x) ∧ ¬∃y.a = goto(y)

Program: The program is shown in Algorithm 2. It is to
be understood as being precondition extended, i.e., an under-
lined action A(o⃗) stands for π?;A(o⃗), where π is the right-
hand side of the precondition axiom for A, instantiated by o⃗.
For better readability, δ∗ is written as loop δ.

Specification: F G ¬∃x, y.DirtyDish(x, y)

Results: Table 1 summarizes the experimental results on
the dishwasher domain. Here, R and D denote the number of
rooms and dishes, respectively, Nodes (TS) and Edges (TS)
refer to the number of nodes and edges of the resulting tran-
sition system, while Nodes (St) and Edges (St) denote the

corresponding metrics of the discovered strategy. Time indi-
cates the duration in seconds for completing the algorithm,
with a timeout set at 120 minutes. As expected, the size of
transition system, and the time needed to construct it, grows
with additional rooms or dishes. Interestingly, the number of
dishes has a bigger impact than the number of rooms. Intu-
itively, this is because the program contains more choices for
dishes than for rooms, which are furthermore nested inside
inner loops. Accordingly, adding one more dish results in a
more significant blow-up than adding a room.

Warehouse Robot
The second domain is a warehouse robot, adapted from an
example in (Claßen and Zarrieß 2017). Here, the robot can
move boxes from one shelf of a warehouse to another. The
boxes may contain an unknown number of objects, and it is
unknown whether and which objects are fragile. Acciden-
tally (i.e., due to the environment’s choice), the robot may
drop a box, breaking all fragile objects in it, unless the box
contains bubble wrap. The robot has the option to put bubble
wrap into a box.

Initial situation:
∀x.Shelf (x) ≡ (x = s1 ∨ x = s2)

∀x.Box(x) ≡ (x = b1 ∨ x = b2)

∀x.∃yIn(x, y) ⊃ ¬Shelf (x) ∧ ¬Box(x)

∃x.Wrap(x)

∀x.¬Broken(x) ∧ ¬Holding(x)

RAt(s1) ∧ ∀x.Box(x) ⊃ At(x, s1)

∀x, y. (In(x, y) ∧ Box(y)) ⊃ At(x, s1)

∀y. y ̸= s1 ⊃ ¬RAt(y) ∧ ∀x.¬At(x, y)

∀x, y. In(x, y) ⊃ ¬Wrap(x)

Precondition axioms:
□Poss(take(x, y)) ≡ At(x, y) ∧ RAt(y)

□Poss(move(x, y)) ≡ RAt(x) ∧ Shelf (y) ∧ (x ̸= y)

□Poss(put(x, y)) ≡ Holding(x) ∧ RAt(y)

□Poss(addWrap(x)) ≡ ∃y.RAt(y) ∧At(x, y)

□Poss(drop(x)) ≡ Holding(x)

Successor state axioms:
□[a]RAt(y) ≡ ∃x. a = move(x, y)

∨ RAt(y) ∧ ¬∃z.a = move(y, z)

□[a]At(x, y) ≡ ∃z[a = move(z, y) ∧
∃v(Holding(v) ∧ (v = x ∨ In(x, v)))]

∨At(x, y) ∧ ¬∃z[a = move(y, z) ∧
∃v(Holding(v) ∧ (v = x ∨ In(x, v)))]

□[a]Holding(x) ≡ ∃y. a = take(x, y)

∨Holding(x) ∧ ¬∃y. a = put(x, y)

□[a]Broken(x) ≡ ∃y. a = drop(y) ∧ In(x, y) ∧ Fragile(x)

∧ ¬∃z. In(z, y) ∧Wrap(z) ∨ Broken(x)

□[a]In(x, y) ≡ a = addWrap(y) ∧Wrap(x) ∨ In(x, y)

Program: The program for the warehouse robot is shown
in Algorithm 3. The notation δ? stands for an optional exe-
cution of δ, and is formally defined as δ? =̇ (δ | nil). Note
that the choice for putting bubble wrap is up to the robot, but
that of the box getting dropped is due to the environment.

Algorithm 3: The program for the warehouse robot
loop

πl0, l1 : {s1, s2}.
[
move(l0, l1)

?;

πb : {b1, b2}.
(
wrap(b)?; take(b, s1); drop(b)

?;

πl2 : {s1, s2}.move(l1, l2); put(b, l2)
)]

B Nodes (TS) Edges (TS) Nodes (St) Edges (St) Time [s]
1 162 162 46 58 11.8
2 7584 7830 2038 2647 13328.9
3 – – – – –

Table 2: Evaluation Results for the Warehouse Domain

Specification: F ∀o. In(o, b1) ⊃ ¬Broken(o)∧At(o, s2)

Results: Table 2 presents the results of the experiments on
the warehouse robot domain, where B denotes the number
of boxes, and the other columns are as before (with a time-
out of 240 minutes). As can be seen, the method struggles
more with this domain than the previous one, which is due to
several reasons. For one, the successor state axioms for the
warehouse robot actually exploit the expressivity of the class
of acyclic theories more than do the ones for the dishwasher
robot. Note that the dishwasher BAT actually falls into the
class of local-effect theories (Liu and Lakemeyer 2009), a
subset of acyclic theories where regression works much sim-
pler (i.e., does not introduce additional quantifiers), and con-
sequently results in less complex formulas. Moreover, the
warehouse robot suffers from the same problem that causes
the Gripper domain to be a challenge in classical planning:
There is a number of objects, each of which has to be han-
dled in the same way. For solving the task, the order in which
objects are handled is hence irrelevant, yet the system con-
siders all possible permutations, resulting in a blow-up. The
problem is amplified by the fact that handling a single box in
this domain is a slightly complex task in itself, containing a
sequence of actions with several choice points. An interest-
ing avenue for future work would be to improve our method
to be able to detect and deal with symmetries of this kind.

6 Conclusion
In this paper, we have presented an approach to the realiza-
tion of GOLOG programs with uncontrollable actions. We
have formulated the realization problem as a synthesis prob-
lem, where parts of the program are under the environment’s
control and the agent needs to determine a policy that real-
izes the program while satisfying the temporal specification.
The presented approach synthesizes policies for LTLf spec-
ifications on GOLOG programs with first-order action theo-
ries that allow for an unbounded number of objects and non-
local effects, an expressive and decidable fragment of the
situation calculus. We have demonstrated the feasibility of
the approach in two example domains. The synthesis method
can also be understood as a (restricted) first-order variant of
LTLf synthesis, where the user may provide a declarative
specification of the agent’s capabilities along with a partial
strategy. Future work could further investigate this relation.

Acknowledgements
The research has been supported by the Alexander von
Humboldt Foundation with funds from the Federal Ministry
for Education and Research, Germany, by the European Re-
search Council (ERC), Grant agreement No. 885107, and by
the Excellence Strategy of the Federal Government and the
Länder, Germany.

References
Abadi, M.; Lamport, L.; and Wolper, P. 1989. Realizable
and Unrealizable Specifications of Reactive Systems. In Au-
tomata, Languages and Programming, 1–17. Berlin, Heidel-
berg: Springer.
Bacchus, F.; and Kabanza, F. 1998. Planning for Tempo-
rally Extended Goals. Annals of Mathematics and Artificial
Intelligence, 22(1-2): 5–27.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-Theoretic, High-Level Agent Programming
in the Situation Calculus. In Proceedings of the 17th Na-
tional Conference on Artificial Intelligence (AAAI), 355–
362. AAAI Press.
Calvanese, D.; De Giacomo, G.; and Vardi, M. Y. 2002. Rea-
soning about Actions and Planning in LTL Action Theories.
In Proceedings of the 8th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
593–602. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.
Camacho, A.; Baier, J. A.; Muise, C.; and McIlraith, S. A.
2018. Finite LTL Synthesis as Planning. In Proceedings of
the 28th International Conference on Automated Planning
and Scheduling (ICAPS).
Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A.; and
McIlraith, S. A. 2017. Non-Deterministic Planning with
Temporally Extended Goals: LTL over Finite and Infinite
Traces. In Proceedings of the 31st AAAI Conference on Ar-
tificial Intelligence (AAAI).
Claßen, J. 2018. Symbolic Verification of Golog Programs
with First-Order BDDs. In Thielscher, M.; Toni, F.; and
Wolter, F., eds., Proceedings of the Sixteenth International
Conference on the Principles of Knowledge Representation
and Reasoning (KR 2018), 524–529. AAAI Press.
Claßen, J.; and Delgrande, J. P. 2021. An Account of Inten-
sional and Extensional Actions, and Its Application to Be-
lief, Nondeterministic Actions and Fallible Sensors. In Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), volume 18,
194–204.
Claßen, J.; and Hofmann, T. 2025. vergo 0.1.1.
https://doi.org/10.5281/zenodo.14690219.
Claßen, J.; and Lakemeyer, G. 2008. A Logic for Non-
Terminating Golog Programs. In Proceedings of the 11th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR), 589–599. AAAI Press.
Claßen, J.; Liebenberg, M.; Lakemeyer, G.; and Zarrieß, B.
2014. Exploring the Boundaries of Decidable Verification
of Non-Terminating Golog Programs. In Proceedings of

the 28th AAAI Conference on Artificial Intelligence (AAAI),
1012–1019. AAAI Press.
Claßen, J.; and Neuss, M. 2016. Knowledge-Based Pro-
grams with Defaults in a Modal Situation Calculus. In Pro-
ceedings of the 22nd European Conference on Artificial In-
telligence (ECAI), 1309–1317. IOS Press.
Claßen, J.; and Zarrieß, B. 2017. Decidable Verification of
Decision-Theoretic Golog. In Frontiers of Combining Sys-
tems, volume 10483, 227–243. Cham: Springer International
Publishing.
De Giacomo, G.; Favorito, M.; Li, J.; Vardi, M.; Xiao, S.;
and Zhu, S. 2022. LTLf Synthesis as AND-OR Graph
Search: Knowledge Compilation at Work. In Proceedings
of the 31st International Joint Conference on Artificial In-
telligence (IJCAI).
De Giacomo, G.; and Lespérance, Y. 2021. The Nondeter-
ministic Situation Calculus. In Proceedings of the Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), volume 18, 216–226. AAAI Press.
De Giacomo, G.; Lespérance, Y.; Levesque, H. J.; and Sar-
dina, S. 2009. IndiGolog: A High-Level Programming Lan-
guage for Embedded Reasoning Agents. In Multi-Agent
Programming. Springer.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012. On
supervising agents in situation-determined ConGolog. In
van der Hoek, W.; Padgham, L.; Conitzer, V.; and Winikoff,
M., eds., Proceedings of the Eleventh International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), 1031–1038. IFAAMAS.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2016.
Bounded Situation Calculus Action Theories. Artificial In-
telligence, 237: 172–203.
De Giacomo, G.; and Rubin, S. 2018. Automata-Theoretic
Foundations of FOND Planning for LTLf and LDLf Goals.
In Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI), 4729–4735. Stockholm, Swe-
den: AAAI Press.
De Giacomo, G.; Ternovska, E.; and Reiter, R. 1997. Non-
Terminating Processes in the Situation Calculus. In Pro-
ceedings of the AAAI’97 Workshop on Robots, Softbots, Im-
mobots: Theories of Action, Planning and Control.
De Giacomo, G.; and Vardi, M. Y. 2000. Automata-
Theoretic Approach to Planning for Temporally Extended
Goals. In Recent Advances in AI Planning, 226–238. Berlin,
Heidelberg: Springer.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Tempo-
ral Logic and Linear Dynamic Logic on Finite Traces. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI), 854–860.
De Giacomo, G.; and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on Finite Traces. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1558–1564. AAAI Press.
Favorito, M. 2023. Efficient Algorithms for LTLf Synthesis.
In Multi-Agent Systems, 540–546. Cham: Springer Nature
Switzerland.

Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. 22. Cham:
Springer.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Grädel, E.; Otto, M.; and Rosen, E. 1997. Two-Variable
Logic with Counting Is Decidable. In Proceedings of Twelfth
Annual IEEE Symposium on Logic in Computer Science
(LICS), 306–317.
Hofmann, T.; and Claßen, J. 2024. LTLf Synthesis on First-
Order Agent Programs in Nondeterministic Environments.
arXiv:2410.00726.
Lakemeyer, G.; and Levesque, H. J. 2010. A semantic char-
acterization of a useful fragment of the situation calculus
with knowledge. Artificial Intelligence, 175(1): 142–164.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A Logic Programming Lan-
guage for Dynamic Domains. Journal of Logic Program-
ming, 31(1-3): 59–83.
Li, J.; Pu, G.; Zhang, Y.; Vardi, M. Y.; and Rozier, K. Y.
2020. SAT-based Explicit LTLf Satisfiability Checking. Ar-
tificial Intelligence, 289: 103369.
Liu, Y. 2002. A Hoare-Style Proof System for Robot Pro-
grams. In Proceedings of the 18th National Conference on
Artificial Intelligence (AAAI), 74–79. USA: American Asso-
ciation for Artificial Intelligence.
Liu, Y.; and Lakemeyer, G. 2009. On First-Order Definabil-
ity and Computability of Progression for Local-Effect Ac-
tions and Beyond. In Boutilier, C., ed., Proceedings of the
Twenty-First International Joint Conference on Artificial In-
telligence (IJCAI 2009), 860–866. AAAI Press.
McCarthy, J.; and Hayes, P. J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. Ma-
chine Intelligence, 4: 463–502.
Patrizi, F.; Lipovetzky, N.; De Giacomo, G.; and Geffner,
H. 2011. Computing Infinite Plans for LTL Goals Using
a Classical Planner. In Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI).
Pnueli, A.; and Rosner, R. 1989. On the Synthesis of a Re-
active Module. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 179–190. New York, NY: ACM.
Ramadge, P.; and Wonham, W. 1989. The Control of Dis-
crete Event Systems. Proceedings of the IEEE, 77(1): 81–
98.
Reiter, R. 2001a. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Reiter, R. 2001b. On Knowledge-Based Programming with
Sensing in the Situation Calculus. ACM Transactions on
Computational Logic, 2(4): 433–457.
Schulz, S.; Cruanes, S.; and Vukmirovic, P. 2019. Faster,
Higher, Stronger: E 2.3. In Fontaine, P., ed., Proceedings of
the Twenty-Seventh International Conference on Automated
Deduction (CADE 2019), volume 11716 of Lecture Notes in
Computer Science, 495–507. Springer.

Shapiro, S.; Lespérance, Y.; and Levesque, H. J. 2002. The
Cognitive Agents Specification Language and Verification
Environment for Multiagent Systems. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 1, 19–26. New York, NY,
USA: Association for Computing Machinery.
Xiao, S.; Li, J.; Zhu, S.; Shi, Y.; Pu, G.; and Vardi, M. 2021.
On-the-Fly Synthesis for LTL over Finite Traces. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(7):
6530–6537.
Zarrieß, B.; and Claßen, J. 2014a. On the Decidability of
Verifying LTL Properties of Golog Programs. In Proceed-
ings of the AAAI 2014 Spring Symposium: Knowledge Rep-
resentation and Reasoning in Robotics (KRR). AAAI Press.
Zarrieß, B.; and Claßen, J. 2014b. Verifying CTL* Proper-
ties of Golog Programs over Local-Effect Actions. In Pro-
ceedings of the Twenty-First European Conference on Arti-
ficial Intelligence (ECAI 2014), 939–944. IOS Press.
Zarrieß, B.; and Claßen, J. 2016. Decidable Verification of
Golog Programs over Non-Local Effect Actions. In Pro-
ceedings of the 30th AAAI Conference on Artificial Intelli-
gence (AAAI), 1109–1115. AAAI Press.
Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017. Symbolic LTLf Synthesis. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1362–1369. Melbourne, Australia: AAAI Press.

