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Abstract
One of the fundamental problems in reasoning
about action is progression, which is to update
a knowledge base according to the effects of an
action into another knowledge base that retains
all proper information. The problem is notori-
ously challenging, as in general, it requires second-
order logic. Efforts have been made to find frag-
ments where progression is first-order definable.
Liu and Lakemeyer showed that for actions that
have only local effects, progression is always first-
order definable. They also generalized the result
to so-called normal actions, that allow for non-
local effects, as long as the affected fluent predi-
cates only depend on local-effect ones, under cer-
tain restrictions on the knowledge base. In addi-
tion, they showed that for so-called proper+ knowl-
edge bases, progression for normal actions can be
efficient under reasonable assumptions. In this pa-
per, we consider a larger class of theories, called the
acyclic ones, that strictly subsumes normal actions.
In such theories, dependencies between non-local
effect fluent predicates are allowed, as long as they
do not contain any cycles. We prove progression to
be equally first-order definable for this class. Fur-
thermore, under similar but stronger assumptions
than those made by Liu and Lakemeyer, we show
that progression is efficient as well.

1 Introduction
In reasoning about action and change, projection is perhaps
the most fundamental problem. Given a sequence of actions
and a target formula, the task is to determine whether the
formula comes to hold after executing the action sequence.
Typically, the domain in question is represented through an
action theory that includes, among other things, a knowledge
base (KB) describing the initial state of the world, as well
as axioms encoding the pre- and post-conditions of actions.
There are at least two different approaches to projection: On
the one hand, there is regression, where one transforms the
formula backward into an equivalent one about the initial sit-
uation, and then checks whether that formula holds according
to the initial KB. Conversely, in progression, one updates the

initial KB to reflect the changes brought about by the action
sequence and then determines whether the goal formula is
entailed. In the well-studied Situation Calculus [McCarthy
and Hayes, 1969; Reiter, 2001] formalism, regression is very
straightforward. However, in practice, it very quickly be-
comes unfeasible, as the resulting formula can grow expo-
nentially in size (unless one introduces new fluents as in [van
Ditmarsch et al., 2007]), which is particularly problematic
the longer the action sequence gets. One benefit of progres-
sion is that one only has to progress the KB once, and can
then check multiple queries against it. However, the prob-
lem of computing a progression for a given action and KB
is notoriously challenging: A strong negative result due to
Lin and Reiter [1997] is that in general, the progression of a
first-order theory may require second-order logic. Vassos and
Levesque [2008] later showed that the second-order nature is
inescapable in the sense that even when allowing for infinite
theories, a restriction to first-order theories is strictly weaker.

Efforts have been made to identify restricted classes of the-
ories, where first-order definability can be guaranteed. In
their seminal work, Lin and Reiter presented such results
for so-called relatively complete theories, where the initial
KB has complete knowledge about the state of the world,
and context-free theories, where action effects are limited to
adding and deleting ground literals as in the classical STRIPS
[Fikes and Nilsson, 1971] planning language. Liu and Lake-
meyer [2009], extending earlier work due to Vassos et al.
[2008], later showed the existence of a first-order progres-
sion for a less restricted class of theories, namely where ac-
tions only have local effects. Intuitively, this means that ac-
tions must mention all affected objects explicitly in their ar-
guments. For example, an action move(x, y, z) for moving
a block x from y to z only affects the truth of on(x, y) and
on(x, z). Classical examples of actions that are not local-
effect include moving a briefcase, which moves all (unmen-
tioned) contained items along with it, and exploding a bomb,
which destroys all (unmentioned) objects in its vicinity. To
capture such domains, Liu and Lakemeyer [2009] generalized
the result on local-effect actions to so-called normal actions,
which allow for non-local effects, as long as the affected flu-
ent predicates only depend on ones that are themselves only
subject to local effects, under certain conditions to the initial
KB. They also showed that for certain types of KB, called
proper+ [Lakemeyer and Levesque, 2002], progression is



computationally efficient.
An example that goes beyond what is expressable by means

of normal actions, and that is hence not supported by Liu and
Lakemeyer’s results, is when objects contained in a box that
is on a shelf become broken from dropping the box. Here,
broken is a non-local-effect predicate that depends on an-
other non-local-effect predicate, nameley on . In this paper,
we show that for a class of actions that includes such scenar-
ios, and that strictly subsumes that of normal actions, pro-
gression is also first-order definable. In such action theories,
called acyclic, dependencies between non-local effect fluent
predicates are allowed, as long as they do not contain any
cycles. We also show that progression is efficient under rea-
sonable assumptions, where dependencies among fluents do
not introduce significant additional complexity.

The remainder of the paper is organized as follows. The
following section presents formal preliminaries about action
theories and progression and reviews the first-order progres-
sion result on local-effect actions and normal actions by Liu
and Lakemeyer [2009]. Our results on progression of the
more general class of acyclic theories are presented in Sec-
tion 3. We then go on to provide computability results in
Section 4, after which we discuss related work and conclude.

2 Preliminaries
In this section, we review progression in the Situation Calcu-
lus and the result on local-effect and normal actions by [Liu
and Lakemeyer, 2009].

We start with a first-order (FO) language L with equality.
For simplicity, we only consider predicates and ignore func-
tions. The set of formulas of L is the least set that contains
the atomic formulas, and if φ and ψ are in the set and x is a
variable, then ¬φ, φ ∧ ψ and ∀xφ are in the set. The connec-
tives∨,⊃,≡, and ∃ are understood as the usual abbreviations.
For readability, we will use parentheses around quantifiers to
indicate the scopes, and “dot” to indicate that the quantifier
preceding the dot has maximum scope, e.g., ∀x.φ(x) ⊃ ψ(x)
stands for ∀x(φ(x) ⊃ ψ(x)). Leading universal quantifiers
might be omitted in writing sentences, i.e., we assume that
free variables are implicitly ∀-quantified from the outside.
E.g., we identify φ(x) with ∀x.φ(x). We use ψ ⇔ ψ to
mean φ and ψ are logically equivalent. Let ψ be a formula,
and let µ and µ′ be two expressions (terms or formulas). We
denote by φ(µ/µ′) the result of simultaneously substituting
every occurrence of µ in φ with µ′.

2.1 Basic Action Theories
The situation calculus [Reiter, 2001] Lsc is a many-sorted
language with some second-order (SO) features suitable for
describing dynamic worlds. There are three sorts: action,
situation, and object. Lsc contains the following features:
a distinct constant S0 denoting the initial situation; a binary
function do(a, s) deriving the resulting situation from doing
action a in situation s; a binary relation Poss(a, s) expressing
action a being executable in situation s; action functions, e.g.
move(x, y); a finite set of fluent predicates, i.e., predicates
whose last argument is a situation term.

A (possibly second-order) formula φ is uniform in a situ-
ation term s if φ does not mention any other situation terms

except s, does not quantify over situation variables, and does
not mention Poss .

The dynamics of a domain is specified by a basic action
theory (BAT) in Lsc of the form

D = Σind ∪ Dap ∪ Dss ∪ Duna ∪ DS0
,where

1. Σind is a set of domain-independent axioms that ensure
situations are well-structured;

2. Dap is a set of action precondition axioms;
3. Dss is a set of successor state axioms (SSAs), one for

each fluent predicate F , of the form

F (~x, do(a, s)) ≡ γ+F (~x, a, s) ∨ ¬γ−F (~x, a, s) ∧ F (~x, s),

where γ+F and γ−F are uniform in s. γ+F and γ−F are the
conditions under which the action causes F to become
true and false, respectively;

4. Duna is the set of unique names axioms for actions:
A(~x) 6= A′(~y), and A(~x) = A(~y) ⊃ ~x = ~y, where
A,A′ are distinct action symbols;

5. DS0 , the initial database (or initial KB), is a finite set of
sentences uniform in S0.

Successor state axioms constitute Reiter’s [1991] solution to
the frame problem. In particular, it is required that for all
fluent predicates F , D |= ¬(γ+F ∧ γ

−
F ). Henceforth, given a

ground action α, we use Sα to refer to the situation do(α, S0).

2.2 Progression
A progression should retain all proper information, i.e., logi-
cal entailments in terms of the future of the initial KB. The be-
low definition by [Vassos and Levesque, 2013] formalizes this
intuition, and it is equivalent to the original model-theoretical
one by [Lin and Reiter, 1997].
Definition 1 (Progression). Let D be a basic action theory, α
a ground action, andDSα

a set of (first-order or second-order)
sentences uniform in Sα. We say thatDSα

is a progression of
DS0

wrt α,D iff for every sentence φ uniform in Sα,

D |= φ iff (D −DS0
) ∪ DSα

|= φ.

Lin and Reiter [1997] proved that progression is always
second-order definable. We write the instantiation of Dss
wrt α and S0 as Dss[α, S0], i.e. Dss[α, S0] is the set of sen-
tences F (~x, do(α, S0)) ≡ ΦF (~x, α, S0), where ΦF denotes
the right-hand side of the SSA for F . Let F1, . . . Fn be the set
of all fluents. For each fluent Fi, we introduce a new predicate
symbol Pi. We use φ ↑ S0 to denote the result of replacing
every Fi(~t, S0) in φ by Pi(~t) and call Pi the lifting predicate
for Fi. For a finite set of formulas Σ, we also use Σ to de-
note the conjunctions of its elements. Using this notation, the
following is a progression of DS0

wrt α:

∃~R.{(Duna ∪ DS0
∪ Dss[α, S0]) ↑ S0}(~P/~R) (1)

where ~R = {R1, . . . , Rn} are SO predicate variables.
Efforts have been made to identify fragments of the Situ-

ation Calculus where progression is first-order definable, i.e.
conditions under which Eq. (1) is equivalent to a first-order
theory. For instance, [Lin and Reiter, 1997] showed that this



is the case if the initial KB is relatively complete, i.e., for
every sentence φ uniform in S0, KB entails either φ or its
negation, or if the basic action theory is context-free, i.e. ac-
tions’ effects are independent of situations. See also [Vassos
and Patrizi, 2013] for a classification of FO definable KBs
and action theories.

Local-Effect Actions
Liu and Lakemeyer [2009] (henceforth LL09) showed that
if the basic action theory is local-effect, then progression is
always FO definable. Intuitively, a ground action has local
effects if it only affects the truth of ground fluent atoms that
mention only the action’s parameters. For example, an action
move(x, y, z) for moving a block x from y to z only affects
the truth of on(x, y) and on(x, z).

Definition 2. An SSA is local-effect if both γ+F (~x, a, s) and
γ−F (~x, a, s) are disjunctions of formulas of the form ∃~z[a =
A(~u) ∧ φ(~u, s)], where A is an action function, ~u contains ~x,
~z is the remaining variables of ~u, and φ is called the context.
An action theory is local-effect if each SSA is local-effect.

The result in LL09 to progress local-effect action theo-
ries is based on forgetting [Lin and Reiter, 1994]. Intu-
itively, forgetting a ground atom (or predicate) in a theory
leads to a weaker theory that entails the same set of sentences
that are “irrelevant” to the atom (or predicate). Forgetting
in propositional logic is equivalent to propositional existen-
tial quantification: the result of forgetting atom p from for-
mula φ is φ(p/TRUE) ∨ φ(p/FALSE), where φ(p/TRUE) (resp.
φ(p/FALSE)) denotes the result of replacing each occurrence
of p in φ by TRUE (resp. FALSE). Forgetting a ground atom in
an FO theory is more complicated but can be computed in a
similar spirit; we refer interested readers to [Lin and Reiter,
1994]. Lastly, forgetting a predicate P in a theory T , written
as forget(T, P ), amounts to replacing the predicate with a
SO variable and existentially quantifying it from the outside,
i.e. ∃R.T (P/R). Progression as in Eq. (1) thus amounts to
adding the effects of the action (Dss[α, S0]) and forgetting
all lifting predicates of fluents (quantified existentially from
the outside). LL09 observed that for a local-effect action the-
ory, every ground action will affect only finitely many fluent
atoms, the so-called characteristic set Ω, determined by the
action’s parameters. Hence, forgetting the lifting predicates
can be reduced to forgetting these finitely many instances, re-
sulting in a first-order theory. For space reasons, we do not
go into details about how to compute such an FO progression
by forgetting, but simply assume that we can apply the proce-
dure described by LL09 when we need to forget local-effect
fluents.

Normal Actions
Actions with global effects are ubiquitous, for example, ex-
ploding a bomb will destroy every fragile object in its vicin-
ity. The inability of local-effect action theories to capture
such dynamic domains motivated LL09 to propose a more
general version of action theories that admit so-called nor-
mal actions. The idea is to allow non-local-effect fluents in
a limited fashion. By imposing additional constraints on the
initial KB and SSAs, a technique for SO quantifier elimina-

tion based on Ackermann’s Lemma [1935] can be applied to
forget the lifting predicates for those fluents.

Definition 3. A finite theory T is semi-definitional wrt a
predicate P if the only occurrence of P in T is of the form
P (~x) ⊃ φ(~x) or ψ(~x) ⊃ P (~x). φ (respectively ψ) is called a
necessary (sufficient) condition of P .

Let WSCP (weakest sufficient condition) be the disjunc-
tion of formulas ψ(~x) such that ψ(~x) ⊃ P (~x) is in T , and
SNCP (strongest necessary condition) be the conjunction of
formulas φ(~x) with P (~x) ⊃ φ(~x) in T .

Theorem 1 ([Liu and Lakemeyer, 2009]). Let T be finite and
semi-definitional wrt P , and T ′ the set of sentences in T not
mentioning P . Then forget(T, P ) ⇔ T ′ ∧ ∀~x.WSCP (~x) ⊃
SNCP (~x).

This provides a means to eliminate the SO quantifiers in-
troduced by forgetting a predicate.

Proposition 1. In any model of D, the sentence F (~x, Sα) ≡
γ+F (~x, α, S0) ∨ ¬γ−F (~x, α, S0) ∧ F (~x, S0) is equivalent to
the conjunction of following sentences: ¬γ+F ∧ F (~x, Sα) ⊃
F (~x, S0), F (~x, S0) ⊃ γ−F ∨ F (~x, Sα), γ+F ⊃ F (~x, Sα), and
γ−F ⊃ ¬F (~x, Sα). 1

The proposition suggests that after lifting, SSAs are semi-
definitional wrt the respective lifting predicates.

Definition 4. A ground action α is said to have local effects
on a fluent F , if by using Duna, γ+F (~x, α, s) and γ−F (~x, α, s)
can be simplified to a disjunction of formulas of the form
~x = ~t ∧ ψ(s), where ~t is a vector of ground terms, and ψ
is a formula whose only free variable is s.

Let LE(α) be the set of fluents on which α has local effects
and NLE(α) = {F | F is in D, and F /∈ LE(α)}, i.e., the set
of remaining fluents.

Definition 5 (Normal Action). A ground action α is normal
if for each fluent F , all the fluents that appear in γ+F and γ−F
are in LE(α).

Clearly, local-effect actions are normal actions. We say
that DS0

is normal wrt α if DS0
is semi-definitional wrt each

fluent in NLE(α).

Theorem 2 ([Liu and Lakemeyer, 2009]). LetDS0
be normal

wrt a normal action α, then progression of DS0
wrt α is FO

definable and computable.

Intuitively, this is because for such a theoryD and action α,
one can use Theorem 1 to forget the lifting predicates of flu-
ents in NLE(α), and thereafter use the techniques for local-
effect theories to forget lifting predicates for fluents in LE(α).

Example 1. Consider the domain that is described by the two
fluents broken(x, s) and shielded(x, s) that say, respectively,
that object x is broken and shielded in situation s. The ac-
tion explode will destroy everything that is unshielded. The

1The proposition is almost identical to Proposition 4.3 of LL09,
the only difference being that they use ¬γ+

F ∧ γ
−
F ⊃ ¬F (~x, Sα)

instead of γ−
F ⊃ ¬F (~x, Sα). Our simplification is justified by the

assumption that D |= ¬(γ+
F ∧ γ

−
F ).



following BAT expresses such a domain:

broken(x, do(a, s)) ≡ a = explode ∧ ¬shielded(x, s) ∨
broken(x, s)

shielded(x, do(a, s)) ≡ shielded(x, s)

Clearly, the ground action α = explode has local effects
on shielded (in fact it has no effects on shielded at all) and it
is a normal action with broken ∈ NLE(α).

Let DS0 be {broken(x, S0) ⊃ x = A}, then DS0 is nor-
mal wrt explode. Grounding Dss wrt explode and applying
Prop. 1, we obtain{

shielded(x, S0) ∧ broken(x, Sα) ⊃ broken(x, S0),
broken(x, S0) ⊃ broken(x, Sα),
¬shielded(x, S0) ⊃ broken(x, Sα)

}
Applying Theorem 1 to forget the lifting predicate for
broken(x, S0) and substituting S0 by Sα, we obtain{

¬shielded(x, Sα) ⊃ broken(x, Sα),
shielded(x, Sα) ∧ broken(x, Sα) ⊃ x = A

}
.

3 Progressing Acyclic Actions
Although the class of normal actions is capable of capturing
the phenomenon of global effects, the requirement that for
each fluent F , fluents in γ+F and γ−F have to be local-effect
is a limitation. Among other things, it disallows a non-local-
effect fluent to depend on other non-local-effect fluents. In
this section, we lift this limitation and show that first-order
definability preserves for a more general class of actions, i.e.
acyclic actions, where non-local-effect fluents can interact in
a complex manner as long as the dependency among fluents
does not contain cycles. Intuitively, for such actions, one can
use Theorem 1 to iteratively forget the lifting predicates of
non-local-effect fluents, following the order of fluent depen-
dencies. Additional syntactical conditions on the SSAs guar-
antee that after each such step, the resulting KB is in the right
form to apply Theorem 1 again.

To begin with, we broaden the class of formulas that can
be handled by considering formulas that can be equivalently
transferred into a semi-definitional form. Note that it is in
general undecidable to determine if a formula is equivalent to
a one in semi-definitional form wrt a predicate.
Definition 6. A formula φ(~x) is said to be in good form wrt
a predicate P if it is of the form

[ψ(~x) ∨ P (~t)] ∧ [ψ′(~x) ∨ ¬P (~t)] ∧ ψ′′(~x)

where ψ,ψ′, ψ′′ contains no P , and terms in ~t are either
ground terms or free variables among ~x.
Proposition 2. If φ(~x) is in good form wrt a predicate P ,
then ¬φ(~x) can be rewritten in good form wrt P .
Lemma 1. If φ(~x) is in good form wrt a predicate P , then
φ(~x) can be rewritten to be semi-definitional wrt P .

Proof. φ(~x) is equivalent to the set

Φ = {∀~x(ψ(~x)∨P (~t)),∀~x(ψ′(~x)∨¬P (~t)),∀~xψ′′(~x)}. (2)

The first sentence (likewise for the second) is equivalent to
∀~y.(∃~x. ~y = ~t∧¬ψ(~x)) ⊃ P (~y). The third one is obvious as
it does not mention P .

Definition 7. Given predicates ~P = {P1, . . . , Pn}, a finite
theory T is said to be separably semi-definitional wrt ~P , if
each sentence φi ∈ T mentions at most one predicate Pi ∈ ~P
and φi is semi-definitional wrt Pi.

Separably semi-definitional theories exclude formulas like
Pi(~x) ⊃ Pj(~x) where both Pi, Pj are in ~P .
Definition 8 (Dependency Graph). Given successor state ax-
ioms Dss and a ground action α, the dependency graph G of
fluents in Dss wrt α is a directed graph defined as follows:
(1) the vertices of G are the set of fluents; (2) there is an edge
F → F ′ for two fluents F, F ′ iff F ∈ NLE(α) and F ′ ap-
pears in γ+F or γ−F .
Definition 9 (Acyclic Action). A ground action α is acyclic
(or has acyclic effects, or the BAT is acyclic wrt α) if
• its dependency graph G is acyclic; and
• for each fluent F , either all fluents in γ+F and γ−F are in

LE(α), or both γ+F and γ−F are in good form wrt at most
one fluent in NLE(α).

Theorem 3. Let α be an acyclic action, and DS0
be sepa-

rably semi-definitional wrt NLE(α). Then the progression of
DS0

wrt α is first-order definable and computable.

Proof. The non-trivial part lies in forgetting the lifting pred-
icates for fluents in NLE(α). We define the depth of a fluent
F in G as the length of the longest path starting in F .

We forget the lifting predicates in decreasing depth order.
For a fluent F with maximal depth, lifting its instantiated
SSA, we obtain (by Prop. 1)

¬γ+F ∧ F (~x, Sα) ⊃ P (~x) (3a)

P (~x) ⊃ γ−F ∨ F (~x, Sα) (3b)

γ+F ⊃ F (~x, Sα) (3c)

γ−F ⊃ ¬F (~x, Sα) (3d)

Clearly, only Eq. (3a) and Eq. (3b) contain the lifting
predicate P . Since DS0

is separably semi-definitional wrt
NLE(α), forgetting P in {(Duna ∪DS0

∪Dss[α, S0]) ↑ S0}
is equivalent to replacing the formulas mentioning P in the
lifted KB with the conjunction of formulas

SCP (~x) ⊃ NCP (~x) (4a)

¬γ+F ∧ F (~x, Sα) ⊃ NCP (~x) (4b)

SCP (~x) ⊃ γ−F ∨ F (~x, Sα) (4c)

whereNCP (~x) is the conjunction of necessary conditions for
P in DS0

↑ S0, and SCP (~x) is the disjunction of sufficient
conditions for P in DS0

↑ S0. Note that by assumption both
NCP (~x) and SCP (~x) contain no fluents in NLE(α).

By Prop. 2 and Lemma 1, the new formulas (4a)–(4c) to-
gether with (3c) and (3d) can all be transformed into a for-
mula that is semi-definitional wrt at most one lifting predicate
of a fluent in NLE(α). We add the transformed result toDS0

.
Note the assumption that F has maximal depth guarantees
that F is not mentioned in the resulting formulas, and so for-
getting the remaining lifting predicates can be iterated.
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Figure 1: Dependency graph for BAT in Example 2.

Example 2. Consider a box domain with three fluents,
adapted from [Claßen and Zarrieß, 2017]: contains(x, y, s)
says that x contains y, on(x, y, s) says that x is on y, and
broken(x, s) says that x is broken in situation s. Action
drop(x, y) denotes dropping container x from shelf y, caus-
ing all things in x to become broken and no longer being po-
sitioned on y. The SSAs are given by
γ+broken := ∃y, z.a = drop(y, z) ∧ on(y, z, s)

∧ contains(y, x, s)

γ−broken := FALSE γ+on := FALSE

γ−on := ∃z.a = drop(z, y) ∧ (z = x ∨ contains(z, x, s))

γ+contains ≡ γ−contains ≡ FALSE

where drop has no effect on contains . Hence, for ground ac-
tion α = drop(Box ,Shelf ), we have LE(α) = {contains},
and NLE(α) = {on, broken}. We can confirm that α
is acyclic as follows. Obviously, the dependency graph,
as shown in Fig. 1, does not contain any cycles. Fur-
thermore, for fluent broken , grounding γ+broken by α yields
on(Box ,Shelf , s) ∧ contains(Box , x, s), while γ−broken is
simply FALSE, so both are in good form wrt on . Moreover,
for fluent on , the SSA only mentions fluents from LE(α).
Now let DS0 be{

contains(Box ,Vase, S0),
x = Box ∧ y = Shelf ⊃ on(x, y),
broken(x, S0) ⊃ ¬∃y.contains(y, x, S0)

}
That is to say, Box contains Vase , Box is on Shelf , and every
broken object is not contained in anything. Applying Prop. 1
to (DS0 ∪Dss) ↑ S0, we obtain (let P, P ′ be the correspond-
ing lifting predicates for on and broken):

T0 =

{
contains(Box ,Vase, S0),
x = Box ∧ y = Shelf ⊃ P (x, y),
P ′(x) ⊃ ¬∃y.contains(y, x, S0)

}
∪

¬[P (Box ,Shelf ) ∧ contains(Box , x, S0)]
∧broken(x, Sα) ⊃ P ′(x),

P ′(x) ⊃ broken(x, Sα),
P (Box ,Shelf ) ∧ contains(Box , x, S0)

⊃ broken(x, Sα),

∪
on(x, y, Sα) ⊃ P (x, y),
P (x, y) ⊃ y = Shelf ∧ [Box = x
∨contains(Box , x, S0)] ∨ on(x, y, Sα),

y = Shelf ∧ (x = Box ∨
contains(Box , x, S0)) ⊃ ¬on(x, y, Sα)


Forgetting P ′ in T0 by Theorem 1 yields a sentence

T1 = {¬[P (Box ,Shelf ) ∧ contains(Box , x, S0)] ∧
(broken(x, Sα) ⊃ ¬∃y.contains(y, x))}.

By Prop. 2 and Lemma 1, it can be rewritten to be semi-
definitional wrt P . Let Re(T1) be the result of rewriting T1.
Now, deleting all sentences with P ′ in T0∪Re(T1), forgetting
P , and replacing S0 by Sα, we have (with simplifications)

contains(Box ,Vase, Sα),
(x = Box ∨ contains(Box , x, Sα))

⊃ ¬on(x,Shelf , Sα),
contains(Box , x, Sα) ⊃ broken(x, Sα),
broken(x, Sα) ⊃ (contains(Box , x, Sα) ∨

¬∃y.contains(y, x, Sα))


That is, Box still contains Vase , yet Box and all things con-
tained in it are no longer on Shelf . Furthermore, all things
contained in Box are broken, and all broken objects are ei-
ther contained in Box , or were among the previously broken
objects not contained in anything.

We note that relaxingDS0
from separable semi-definitional

to semi-definitional would cause troubles. In the above exam-
ple, suppose another binary fluent F (x, y) is affected glob-
ally by the action α = drop(Box ,Shelf ). Let γ+F (α, x, y, s)

be on(Box ,Shelf ) and γ−F (α, x, y, s) be FALSE. Consider
DS0 = {F (x, y, S0) ⊃ on(x, y, S0)}, which is semi-
definitional wrt F and on . The formula of Eq. (4b) ob-
tained by forgetting the lifting predicate of F in the grounded
theory amounts to ¬on(Box ,Shelf , S0) ∧ F (x, y, Sα) ⊃
on(x, y, S0), which is no longer in good form wrt on .

For a similar reason, our approach cannot handle non-
acyclic actions such as the action inc of incrementing a
counter: The SSA C(x, do(a, s)) ≡ a = inc ∧C(x− 1, s)∨
C(x, s) would yield a self-loop C → C in the dependency
graph.

Finally, requiring γ+F (also γ−F ) to be in good form wrt at
most one fluent in NLE(α) means the dependent fluents ap-
pear essentially as literals. This seems to be inevitable as
forgetting the lifting predicate of F generates formulas in-
volving both γ+F and its negation (cf. Eq. (3c) and Eq. (4b)).
It is desirable but also challenging to extend the result beyond
formulas in good form. We leave it for future exploration.

4 Computability Results
So far, we have discussed progression in terms of FO-
definability, but did not pay attention to computability. Inter-
estingly, LL09 showed that for local-effect actions and nor-
mal actions, the progression of so-called proper+ KBs [Lake-
meyer and Levesque, 2002] is not just FO-definable, but also
efficiently computable (polynomial in the size of KB) under
reasonable assumptions. Here, we show that the progression
of such KBs against acyclic actions is efficient as well, under
similar but stronger assumptions.

Let e range over ewffs, i.e., quantifier-free formulas whose
only predicate is equality. We let ∀φ denote the universal
closure of φ.
Definition 10. Let e be an ewff and d a clause. Then a for-
mula of the form ∀(e ⊃ d) is called a ∀-clause. A KB is
called proper+ if it is a finite non-empty set of ∀-clauses.

The class of proper+ KBs is very expressive. Similar to
how a standard relational database corresponds to a maxi-
mally consistent and finite set of ground literals, in the sense



that every atom is known to be true iff stored in the database
(and known to be false iff derivable by negation as failure),
a proper+ KB corresponds to a consistent but infinite set of
ground clauses, not necessarily maximal. Besides, it is shown
that for certain types of queries, query evaluation against
proper+ KB is efficient and can be computed in polynomial
time [Liu and Levesque, 2005].

Theorem 4 ([Liu and Lakemeyer, 2009]). Let Σ be a proper+
KB, and P (~c) a ground atom. Then the result of forgetting
P (~c) in Σ is definable as a proper+ KB and can be computed
in O(n+ 4wm2) time, where n is the size of Σ, m is the size
of sentences in Σ where P appears, and w is the maximum
number of appearances of P in a sentence of Σ.

This is because every sentence in Σ can be transformed to
a certain normal form wrt P (~c), i.e., a formula of the form
φ1 = ∀(e1 ⊃ d1 ∨ P (~t)) or φ2 = ∀(e2 ⊃ d2 ∨ ¬P (~t))
where either ~t = ~c or e1 ∧ ~t = ~c (likewise for e2) is unsat-
isfiable. Moreover, this procedure takes O(n + 2wm) time
[Liu and Lakemeyer, 2009]. In addition, forgetting P (~c) in
the transformed proper+ KB amounts to computing all the ∀-
resolvents for any two input clauses: for φ1 and φ2 as above
one obtains ∀(e1∧e2 ⊃ d1∨d2), yielding a KB that is again in
proper+ form. Hence the overall complexity isO(n+4wm2).

In the same spirit, they showed:

Theorem 5 ([Liu and Lakemeyer, 2009]). Let Σ be a proper+
KB which is semi-definitional wrt predicate P. Then the result
of forgetting P in Σ is definable as a proper+ KB and can be
computed in O(n + m2) time, where n is the size of Σ, and
m is the size of sentences in Σ where P appears.

In the above result, assuming w = O(1) and m2 = n,
both forms of forgetting can be computed in O(n) time, i.e.
efficiently. Hence, LL09 had the following as a theorem. An
SSA is said to be essentially quantifier-free if for each ground
action α, by using Duna, each of γ+F (~x, α, s) and γ−F (~x, α, s)
can be simplified to a quantifier-free formula.

Theorem 6 ([Liu and Lakemeyer, 2009]). Suppose that Dss
is essentially quantifier-free, α is a normal action, and DS0

is a proper+ KB which is normal wrt α. Then progression of
DS0

wrt α is definable as a proper+ KB and can be efficiently
computed.

This is by the fact that if Dss is essentially quantifier-free,
thenDss[α, S0] is definable as a proper+ KB. Thereafter, one
can use Theorem 5 to efficiently forget non-local-effect flu-
ents and Theorem 4 to efficiently forget local-effect fluents
via forgetting the characteristic set.

An implicit assumption of the above result is that after for-
getting a non-local-effect fluent, the number of sentences in-
volving other non-local-effect fluents in the resulting KB does
not increase so that the process can be iterated to forget other
non-local-effect fluents. This is indeed the case for normal
actions where non-local-effect fluents only depend on local-
effect ones. The situation differs for acyclic actions. For
instance, in Example 2 forgetting the lifting predicate P ′ of
broken will generate a formula that involves the lifting pred-
icate P for on , i.e., T1.

Lemma 2. If φ(~x) is in good form wrt a predicate P and

quantifier-free, then φ(~x) can be transformed into a set of ∀-
clauses that is semi-definitional wrt P .

Proof. ∀~x(ψ(~x) ∨ P (~t)) can equivalently be rewritten as
∀~x∀~y. ~y = ~t ⊃ (ψ(~x) ∨ P (~y)), which has the right form if
w.l.o.g. ψ is in clausal form (and quantifier-free by assump-
tion). Similar for ∀~x(ψ′(~x) ∨ ¬P (~t)) and ∀~xψ′′(~x).

The lemma implies that although new formulas might
be generated by forgetting a non-local-effect fluent for an
acyclic action, the new formulas can be rewritten as a proper+
KB that is semi-definitional wrt the non-local-effect fluent it
might depend on. This is crucial for the progression to itera-
tively forget multiple fluents.

Besides, the number of generated formulas that involve a
non-local-effect fluent is linear in the size of sentences that in-
volve the forgotten fluent (the generated sentences in Eq. (4b)
and Eq. (4c) need to consider all the sufficient and necessary
conditions). In addition, these formulas (conditions) will ac-
cumulate with the increase of the depth of a non-local-effect
fluent in the graph. Namely, forgetting a non-local-effect flu-
ent P with maximum depth in the dependency graph takes
time O(l2) where l is the size of all sentences in the initial
KB that involve fluents that have a path to P , including P it-
self. As a special case, for normal actions, we have l = m,
where m is the size of sentences in the KB that involve P .
Therefore, assuming l2 = n where n is the size of KB, we
have:

Theorem 7. Suppose that Dss is essentially quantifier-free,
α is an acyclic action, and DS0

is a proper+ KB which is
seperably semi-definitional wrt NLE(α). Then the progres-
sion of DS0

wrt α is definable as a proper+ KB and can be
efficiently computed.

Example 3. In Example 2, Dss is essentially quantifier-free.
Moreover, consider the ground action α = drop(Box ,Shelf )
and DS0

as follows:{
contains(Box ,Vase, S0),
x = Box ∧ y = Shelf ⊃ on(x, y, S0),
¬broken(x, S0) ∨ contains(y, x, S0)

}

Clearly, DS0 is a proper+ KB and is semi-definitional wrt
NLE(α) (it is equivalent to the initial theory before).

Now, applying Prop. 1 to D0 ∪Dss[α, S0] ↑ S0, we obtain
the following set of ∀-clauses (marked as T ′0):{

contains(Box ,Vase, S0),
x = Box ∧ y = Shelf ⊃ P (x, y),
¬P ′(x) ∨ contains(y, x, S0)

}
∪


P (Box ,Shelf ) ∨ ¬broken(x, Sα) ∨ P ′(x),
contains(Box , x, S0) ∨ ¬broken(x, Sα) ∨ P ′(x),
¬P ′(x) ∨ broken(x, Sα),¬P (Box ,Shelf )∨
¬contains(Box , x, S0) ∨ broken(x, Sα)

∪

¬on(x, y, Sα) ∨ P (x, y),
¬P (x, y) ∨ y = Shelf ∧ x = Box ∨ on(x, y, Sα),
¬P (x, y) ∨ contains(Box , x, S0) ∨ on(x, y, Sα),
x = Box ∧ y = Shelf ⊃ ¬on(x, y, Sα),
y 6= Shelf ∨ ¬contains(Box , x, Sα)

∨¬on(x, y, Sα)





Forgetting P ′ in T ′0 by computing all ∀-resolvents yields
the following set (marked as T ′1)

contains(Box , x, Sα) ∨ ¬broken(x, Sα)
∨contains(y, x, S0),

P (Box ,Shelf ) ∨ ¬broken(x, Sα)
∨contains(y, x, S0)

 .

It is easy to check that T ′1 is logically equivalent to T1 from
Example 2. By introducing new variables and renaming those
in T ′1, we rewrite the second ∀-clause as x = Box ∧ y =
Shelf ⊃ (P (x, y)∨¬broken(x′, Sα)∨ contains(y′, x′, S0))
so that T ′1 is semi-definitional wrt P . Similarly, all sentences
in T ′0 mentioning P (Box ,Shelf ) can be rewritten in this way.

Now, deleting all sentences in T ′0 ∪T ′1 that mention P ′ and
forgetting P , we obtain the following proper+ KB, which is
equivalent to the progression result from before.

contains(Box ,Vase, Sα),¬on(Box ,Shelf , Sα)
¬contains(Box , x, Sα) ∨ ¬on(x,Shelf , Sα),
¬contains(Box , x, Sα) ∨ broken(x, Sα),
¬broken(x, Sα) ∨ contains(Box , x, Sα)

∨contains(y, x, Sα)


5 Related Work
In their seminal work, Lin and Reiter [1997] provided a gen-
eral account of progression, extending earlier concepts such
as the update of a database by means of STRIPS operators,
or Pednault’s [1987; 1989] ADL formalism, where databases
had to be logically complete theories. There, Lin and Re-
iter also showed that progression is always second-order de-
finable and that theories exist whose progression is not rep-
resentable by a finite first-order theory, and they conjecture
that first-order logic is generally insufficient to capture pro-
gression, even when allowing for infinite theories. This con-
jecture was later proved to be true in [Vassos and Levesque,
2008], where it is shown that an infinite first-order theory is
generally too weak to capture all entailments of a progressed
theory. Since then, efforts have been made to identify frag-
ments where progression is first-order definable.

Lin and Reiter [1997] showed that if the KB is relatively
complete, i.e. for every sentence φ uniform in S0, KB en-
tails either φ or its negation, or, if the basic action theory
is context-free, i.e. actions’ effects are independent of situa-
tions, progression is FO definable in case the KB is separably
semi-definitional wrt all fluents (although they did not use
this terminology). Essentially, context-free actions are spe-
cial cases of acyclic actions where the effect conditions γ+F
and γ−F do not contain fluents at all. Later, [Vassos et al.,
2008] proved that progression through local-effect actions is
FO definable, yet no explicit form was provided until [Liu
and Lakemeyer, 2009]. In [Liu and Lakemeyer, 2009], nor-
mal actions are examined, extending the concept of local-
effect actions. However, as described in this paper, their
result was limited as to how non-local-effect fluents might
depend on one another, a limitation we overcome with the
notion of acyclic theories. [Liu and Lakemeyer, 2009] also
showed that if the KB is additionally in a certain form called
proper+, progression can be carried out efficiently. To cap-
ture domains that involve actions that may not be local-effect

or normal, [Vassos et al., 2009] studied range-restricted ac-
tion theories, i.e., theories where action effects are “bounded”
in a certain sense. One appealing aspect of such action theo-
ries compared to our acyclic ones is that they allow fluents to
depend on themselves, yet additional constraints have to be
imposed on the action theories and initial KB (different from
our notion of separably semi-definitional) to ensure a first-
order progression. The above results on local-effect, normal
actions and range-restricted action theories were extended to
cover functions in [Belle and Lakemeyer, 2011]. More re-
cently, [De Giacomo et al., 2016] showed that progression is
FO definable for bounded situation calculus action theories,
i.e., action theories where the number of fluent instances af-
fected by actions is bounded by a given constant.

Since its inception by Lin and Reiter [1997], progression
has seen many applications and implications. [Lakemeyer
and Levesque, 2009] consider only knowing a KB and show
that progressing it wrt an action and sensing result amounts to
only knowing another KB. This result was extended to prob-
abilistic knowledge bases for noisy actions and sensing in
[Liu and Feng, 2023]. See also [Belle and Levesque, 2014;
Belle and Levesque, 2020] for the progression of a probabilis-
tic knowledge base in the classical Situation Calculus. Other
works that involve progression include [Fang et al., 2019]
for multi-agent modal logic, [Schwering et al., 2015; Claßen
and Delgrande, 2022] for belief revision, and [Claßen, 2013;
Liu et al., 2023] for planning and verification in GOLOG.
Notably, [Zarrieß and Claßen, 2016] introduced a concept
of acyclic action theories that ours is inspired by, but that
differs in its formal definition.2 There, they were used to
show that the verification of temporal properties for non-
terminating GOLOG programs is decidable, under additional
restrictions. Yet, their result is based on regression, and it was
open whether (though plausible that) this implies a first-order
result on progression. The result of acyclic actions provided
in this paper contributes to completing the picture.

6 Conclusion
In this work, we extend the first-order progression of local-
effect and normal actions by Liu and Lakemeyer [2009] and
show that for acyclic actions that strictly subsume normal ac-
tions, progression is still first-order definable. Furthermore,
we show that, for proper+ KBs, under similar but more strin-
gent assumptions than made by Liu and Lakemeyer, progres-
sion is efficient as well.

For future work, a possible direction is to explore whether
weaker restrictions than being in good form can be applied.
Besides, a well-known algorithm for second-order quantifier
elimination [Gabbay et al., 2008] is the DLS algorithm [Do-
herty et al., 1997], which is proven to terminate if the depen-
dency of SO variables is subject to certain acyclicity proper-
ties [Conradie, 2006]. It would be interesting to investigate
how exactly the acyclicity there is connected to our notion of
acyclicity of fluents for acyclic actions.

2[Zarrieß and Claßen, 2016] subdivides the formulas comprising
γ+
F and γ−

F into an effect descriptor and context condition. For the
dependency graph, only effect descriptors are considered.
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